Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)
b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
A=2(x+y)+3xy(x+y)+5x2y2(x+y)+2
A=2.0+3xy.0+5x2y2.0+2
A=2
B=xy(x+y)+2x2y (x+y)+5
B=xy.0+2x2y.0+5=5
a,Ta có 2(x+y)+3xy(x+y)+5x2y2(x+y)+4
Xg thay x+y=0 vào là dc bn nhó
Chúc bn hok tốt
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}=\)\(=\frac{\left(y-2x+4z\right)+\left(z-2y+4x\right)+\left(x-2z+4y\right)}{2x+2y+2z}=\frac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{3}{2}\)
\(\Rightarrow\left\{\begin{matrix}2\left(y-2x+4z\right)=6x\\2\left(z-2y+4x\right)=6y\\2\left(x-2z+4y\right)=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y-2x+4z=3x\\z-2y+4x=3y\\x-2z+4y=3z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+4z=5x\\z+4x=5y\\x+4y=5z\end{matrix}\right.\)
\(P=\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)
\(P=\frac{4y+x}{2y}.\frac{4z+y}{2z}.\frac{4x+z}{2x}=\frac{5z}{2y}.\frac{5x}{2z}.\frac{5y}{2x}=\frac{125}{8}\)
<=> x2 + 2x2y2 + 2y2 - (x2y2 + 2x2) - 2 = 0
<=> x2 + 2x2y2 + 2y2 - x2y2 - 2x2 - 2 = 0
<=> -x2 + x2y2 + 2y2 - 2 = 0
<=> x2 (y2 - 1) + 2 (y2 - 1) = 0
<=> (x2 + 2)(y2 - 1) = 0
Vì x2 + 2 > 0 với mọi x => y2 - 1 = 0 <=> y = ± 1.
Vậy x \(\in\)R, y = ± 1.
_Kik nha!! ^ ^
<=>x2+2x2+2y2-x2y2-2x2-2=0
<=>-x2+x2y2+2y2-2=0
<=>x2(y2-1)+2(y2-1)=0
<=>(x2+2)(y2-1)=0
Vì x2+2>0 với mọi x=>y2-1=0<=>y=1 hoặc (-1)
Vậy x thuộc R,Y = 1 hoặc (-1