Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â, đánh giá về trái ta có
\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}>=1\)
\(\sqrt{9y^2-6y+1}>=0\)
do đó dấu bằng xảy ra khi x=2 va y=1/3
phần b làm tương tự
b, VT <=2-1=1
\(P=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{2x+3\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}+1}+\frac{10}{2\sqrt{x}+1}-\frac{5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\left(\sqrt{x}+1\right)-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}+1+10\sqrt{x}+10-5}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{6}{\sqrt{x}+1}\)
b) Để P nguyên tố thì \(\frac{6}{\sqrt{x}+1}\) nguyên tố
Để \(P\inℕ^∗\) thì \(\sqrt{x}+1\inƯ\left(6\right)\)
Mà P nguyên tố \(\Rightarrow\frac{6}{\sqrt{x}+1}=\left\{2;3\right\}\Rightarrow\sqrt{x}+1=\left\{2;3\right\}\)
Với \(\sqrt{x}+1=2\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Với \(\sqrt{x}+1=3\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Vậy ...........
a) Cách 1:
\(pt\Leftrightarrow\hept{\begin{cases}y\ge0\\y^2=\left(x+2\right)^2+1\text{ (1)}\end{cases}}\)
\(\left(1\right)\Leftrightarrow\left[y+x+2\right]\left[y-\left(x+2\right)\right]=1\)
\(\Leftrightarrow\left(y+x+2\right)\left(y-x-2\right)=1\)
\(\Rightarrow\hept{\begin{cases}y+x+2=1\\y-x-2=1\end{cases}}\)hoặc \(\hept{\begin{cases}y+x+2=-1\\y-x-2=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)(nhận) hoặc \(\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)(loại)
Cách 2: Để y nguyên thì biểu thức trong căn phải là một số chính phương
\(A=x^2+4x+5=\left(x+2\right)^2+1=t^2+1\)
+Với \(t=0\) thì \(A=1=1^2\), là một số chính phương --> thỏa
+Với \(t>0\), ta có: \(t^2< t^2+1< \left(t+1\right)^2\)(chứng minh bằng biến đổi tương đương)
A là một số nằm giữa hai số chính phương liên tiếp nên A ko thể là số chính phương --> loại
+Với \(t< 0\) thì \(t^2< t^2+1< \left(t-1\right)^2\)(chứng minh bằng biến đổi tương đương)
A là một số nằm giữa hai số chính phương liên tiếp nên A ko thể là số chính phương --> loại
Vậy t chỉ có thể bằng 0;
\(t=0\Leftrightarrow\hept{\begin{cases}x+2=0\\y=\sqrt{0^2+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a/ y2 = (x2 +2)2 +1 <=> (y-x2 -2)(y+x2 +2)=1 vì x,y nguyên nên 2 đa thức ở vế trái cùng bằng 1 hoặc -1
ĐK: \(y\ne0,xy\ge0\).
\(4x^2+9y^2=16xy\)
Chia cả hai vế cho \(y^2\)ta được:
\(4\left(\frac{x}{y}\right)^2+9=\frac{16x}{y}\)
\(\Leftrightarrow\frac{x}{y}=\frac{4\pm\sqrt{7}}{2}\)
Với \(y>0\)thì \(x\ge0\)
\(P=\frac{\sqrt{xy}+\sqrt{y^2}}{y}-\sqrt{\frac{x}{y}}=\frac{\sqrt{x}\sqrt{y}+y}{y}-\sqrt{\frac{x}{y}}=\sqrt{\frac{x}{y}}+1-\sqrt{\frac{x}{y}}=1\)
Với \(y< 0\)thì \(x\le0\):
\(P=\frac{\sqrt{xy}+\sqrt{y^2}}{y}-\sqrt{\frac{x}{y}}=\frac{\sqrt{-x}\sqrt{-y}-y}{y}-\sqrt{\frac{x}{y}}=-\sqrt{\frac{x}{y}}-1-\sqrt{\frac{x}{y}}=-2\sqrt{\frac{x}{y}}-1\)
\(=-2\sqrt{\frac{4\pm\sqrt{7}}{2}}-1=-\left(1\pm\sqrt{7}\right)-1=-2\pm\sqrt{7}\)
Lời giải:
Xét PT $(1)$:
$x^2+4x-5=y^2-6y$
$\Leftrightarrow x^2+4x+4=y^2-6y+9$
$\Leftrightarrow (x+2)^2=(y-3)^2$
$\Leftrightarrow (x+2-y+3)(x+2+y-3)=0$
$\Leftrightarrow (x-y+5)(x+y-1)=0$
Nhưng PT(2) thì có vấn đề, vì $1-y\geq 0\Rightarrow y\leq 1$
Mà $2y-5\geq 0\Leftrightarrow y\geq \frac{5}{2}$ (vô lý)
\(\left(\sqrt{x^2-4x+5}\right)\) \(+\left(\sqrt{9y^2-6y+1}\right)\)\(=1\)
<=>\(\left(\sqrt{\left(x-2\right)^2+1}\right)\) \(+\sqrt{\left(3y-1\right)^2}\)\(=1\)
<=>\(\left(x-2\right)^2+1+\left(3y-1\right)^2\) \(=1\)
<=>\(\left(x-2\right)^2+\left(3y-1\right)^2=0\)
<=>\(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(3y-1\right)^2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=2\\y=\frac{1}{3}\end{cases}}\)