\(^{\left(x+\sqrt{2015+x^2}\right)\left(y+\sqrt{2015+y^2}\right)=2015}_{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2015

(x+căn bậc 2 của (2015+x2))(y+căn bậc 2 của(2015+y2)=2015

<=>(x+căn bậc 2 của (2015+x2))(x-căn bậc 2 của (2015+x2))(y+căn bậc 2 của(2015+y2)=2015(x-căn bậc 2 của(2015+x2)

<=>x=y+căn bậc 2 của(2015+x2)-căn bậc 2 của (2015+y2) (1)

Tương tự: y=x+ căn bậc 2 của (2015+y2)-căn bậc 2 của (2015+x2) (2)

Cộng 2 vế của  (1) và (2)

=> x+y=0 <=> y=-x

Thay vào pt ta được:

3x2+8x2+12x2=23 <=> 23x2

<=>x=1 hoặc x=-1

<=>y=-1 hoặc y=1

26 tháng 9 2017

1 +\(\sqrt{x+y+3}\) = \(\sqrt{x}\)\(\sqrt{y}\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Liên hợp.

PT(1)\(\Rightarrow (x-\sqrt{2015+x^2})(x+\sqrt{2015+x^2})(y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)

\(\Leftrightarrow [(x^2)-(2015+x^2)](y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)

\(\Rightarrow -2015(y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)

\(\Rightarrow y+\sqrt{2015+y^2}=\sqrt{2015+x^2}-x(*)\)

Tương tự, nhân cả 2 vế của PT(1) với \(y-\sqrt{2015+y^2}\) ta cũng thu được:

\(x+\sqrt{2015+x^2}=\sqrt{2015+y^2}-y(**)\)

Từ \((*);(**)\Rightarrow x+y=0\Rightarrow y=-x\)

Thay vào PT (2)

\(3x^2+8x^2+12x^2=23\Rightarrow 23x^2=23\Rightarrow x=\pm 1\)

\(\Rightarrow y=\mp 1\)

Vậy..........

13 tháng 5 2018

Sửa \(y+\sqrt{2015+x^2}\rightarrow y+\sqrt{2015+y^2}\)

Ta có: \(\left(x+\sqrt{2015+x^2}\right)\left(y+\sqrt{2015+y^2}\right)=2015\)

\(\Leftrightarrow\left(x+\sqrt{2015+x^2}\right)\left(\sqrt{2015+x^2}-x\right)\left(y+\sqrt{2015+y^2}\right)=2015\left(\sqrt{2015+x^2}-x\right)\)

\(\Leftrightarrow2015\left(y+\sqrt{2015+y^2}\right)=2015\left(\sqrt{2015+x^2}-x\right)\)

\(\Leftrightarrow x+y=\sqrt{2015+x^2}-\sqrt{2015+y^2}\)

Tương tự ta cũng có: \(x+y=\sqrt{2015+y^2}-\sqrt{2015+x^2}\)

Cộng theo vế 2 đẳng thức trên ta có:

\(2\left(x+y\right)=0\Leftrightarrow x=-y\)

Thay \(x=-y\) vào \(pt\left(2\right)\) ta có:

\(23y^2=23\Leftrightarrow y=\pm1\Leftrightarrow x=\mp1\)

16 tháng 5 2015

help me !!!!!!!!!!!!!!!!!

 

18 tháng 9 2016

⊰║۩๖ۣۜNỆN۩║⊱

k đi m.n :))))

22 tháng 8 2016

Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)

\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)

Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)

               \(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)

Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)

=>P không phải là số chính phương

13 tháng 2 2020

Từ giả thuyết ta đc x+y=0 thì =>x^2015+y^2015=(x+y)(...)=0

cái đoạn x+y=0 bạn xem mấy bài đăng khác ấy!:>>

15 tháng 6 2018

Ta có:\(\left(x+\sqrt{x^2+2015}\right)\left(y-\sqrt{y^2+2015}\right)\left(y+\sqrt{y^2+2015}\right)=2015\left(y-\sqrt{y^2+2015}\right)\)

\(\Leftrightarrow-2015\left(x+\sqrt{x^2+2015}\right)=2015\left(y-\sqrt{y^2+2015}\right)\)

\(\Leftrightarrow x+\sqrt{x^2+2015}=\sqrt{y^2+2015}-y\)                                                 (1)

 Lại có:\(\left(x+\sqrt{x^2+2015}\right)\left(x-\sqrt{x^2+2015}\right)\left(y+\sqrt{y^2+2015}\right)=2015\left(x-\sqrt{x^2+2015}\right)\)

\(\Leftrightarrow-2015\left(y+\sqrt{y^2+2015}\right)=2015\left(x-\sqrt{x^2+2015}\right)\)

\(\Leftrightarrow y+\sqrt{y^2+2015}=\sqrt{x^2+2015}-x\)                                               (2)

Cộng theo vế \(\left(1\right)\) và \(\left(2\right)\) ta có:\(x+\sqrt{x^2+2015}+y+\sqrt{y^2+2015}=\sqrt{y^2+2015}+\sqrt{x^2+2015}-x-y\)

\(\Leftrightarrow2x+2y=0\Leftrightarrow x+y=0\)

27 tháng 8 2016

Ta có (x + |x| + 2016)(y + |y| + 2016) > 2016 với mọi x, y nên không thể tính được P

20 tháng 9 2016

x+y =0

=> P = 1

30 tháng 3 2015

ai giups tui di

 

15 tháng 6 2016

Bài 1

Từ giả thiết, bình phương 2 vế, ta được:

\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)

\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)

\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)

\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)

\(=2014\)

\(\Rightarrow A=\sqrt{2014}.\)

Bài 2:

Đặt \(\sqrt{2015}=a>0\)

\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)

Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)

\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)

\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)

Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)

Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)

Bài 3

Áp dụng bất đẳng thức Côsi

\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)

Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)

Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)

15 tháng 6 2016

Em mới hoc lớp 7