Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-2y-2)2+(y-6)2 =39-2A
A=< 39/2, max A là 39/2 khi x =14 và y =6
a) \(xy+3x-2y-7=0\)
\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)
mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị:
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | -1 |
y | -2 | -4 |
Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).
b) \(5y-2x^2-2y^2+2=0\)
\(\Leftrightarrow16x^2+16y^2-40y-16=0\)
\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)
Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.
Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)
mà \(\left(4x\right)^2⋮16\)nên ta có:
\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)
Có 3x^2+y^2+2x-2y=1
=>9x^2+3y^2+6x-6y=3
=>(3x+1)^2+3(y-1)^2=7
=>3(y-1)^2 <=7
=> (y-1)^2<=7/3<2.333(3)
Mà (y-1)^2 là scp
=> (y-1)^2 thuộc 0,1
Sau đó xét 2 trg hợp và đối chiếu đk x thuộc Z
Chúc học tốt nhaaa
\(3x^2+y^2+2x-2y-1=0\)
\(\Leftrightarrow x^2+2x\left(x+y\right)-2xy+y^2+2x-2y-1=0\)
\(\Leftrightarrow x^2+2-2xy+y^2+2x-2y-1=0\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\)
\(\Leftrightarrow x-y+1=0\)
\(\Leftrightarrow y=x+1\)
Thế vào \(x\left(x+y\right)=1\)
\(\Rightarrow x\left(2x+1\right)=1\)
\(\Leftrightarrow2x^2+x-1=0\Rightarrow\left[{}\begin{matrix}x=-1\Rightarrow y=0\\x=\dfrac{1}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)