\(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

pt đã cho <=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)-2\left(x+y\right)-\left(x+y+2\sqrt{xy}\right)+2\sqrt{xy}+4\left(\sqrt{x}+\sqrt{y}\right)-4=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)-2\left(x+y\right)+2\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}-2\right)^2=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}-2\right)\left(x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2\right)=0\)

<=>\(\orbr{\begin{cases}\sqrt{x}+\sqrt{y}=2\\x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2=0\end{cases}}\)

th2: nhân cả hai vế với 2 ta được

\(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+2>0\)

=>th2 vô nghiệm

do đó M=\(\sqrt{xy}\)

áp dụng bdt cô si ta có \(\sqrt{x}+\sqrt{y}>=2\sqrt{\sqrt{xy}}\)

<=>1>=\(\sqrt{\sqrt{xy}}\)(do \(\sqrt{x}+\sqrt{y}=2\))

<=>\(\sqrt{xy}< =1\)

<=>M<=1

23 tháng 9 2019

ĐKXĐ: x;y>=4

\(2.\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)

\(\Leftrightarrow x.\sqrt{4}.\sqrt{y-4}+y.\sqrt{4}.\sqrt{x-4}=xy\)

Theo AM-GM ta có:

\(VT\le x.\frac{y}{2}+y.\frac{x}{2}=xy=VP\)

=> VT=VP<=> x=y=8

Vậy x=y=8

24 tháng 11 2015

áp dụng BĐT co-sy ta có:

\(x\sqrt{\left(y-4\right)4}\le\frac{xy}{2}\)

tương tự ta có:

\(y\sqrt{\left(x-4\right)4}\le\frac{xy}{2}\)

cộng từng vế thì được \(VT\le VP\)

=> bằng khi x=y=8

24 tháng 1 2017

\(pt\Leftrightarrow\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-4}}{x}=\frac{1}{2}\)

Áp dụng BĐT AM-GM ta có: 

\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{4\left(y-4\right)}}{2y}\le\frac{4+y-4}{2\cdot2y}=\frac{1}{4}\)

Tương tự ta cũng có \(\frac{\sqrt{x-4}}{x}\le\frac{1}{4}\)

Cộng theo vế ta có Đpcm

Dấu "=" xảy ra khi x=y, thay vào giải ra ta dc x=y=8

29 tháng 10 2018

biết làm rồi

30 tháng 10 2018

VẬy bạn giải ra cho mọi người xem được ko?

Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!

12 tháng 9 2017

ĐKXĐ : x;y > 0

\(\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)=3\sqrt{y}\left(\sqrt{x}+5\sqrt{y}\right)\)

\(\Leftrightarrow x+\sqrt{xy}=3\sqrt{xy}+15y\)

\(\Leftrightarrow x=2\sqrt{xy}+15y\)

\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)-16y=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2-\left(4\sqrt{y}\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{x}-5\sqrt{y}\right)\left(\sqrt{x}+3\sqrt{y}\right)=0\)

Mà theo đk x;y > 0 nên \(\sqrt{x}+3\sqrt{y}>0\) Do đó \(\sqrt{x}-5\sqrt{y}=0\Rightarrow\sqrt{x}=5\sqrt{y}\Rightarrow x=25y\)

Thay vào C ta được :

\(C=\frac{2.25y+\sqrt{25y.y}+3y}{25y+\sqrt{25y.y}-y}=\frac{50y+5y+3y}{25y+5y-y}=2\)