Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x-y=xy
<=> xy-(x-y) = 0
<=> xy-x+y = 0
<=> y(x+1)-x=0
<=> y(x+1) - (x+1) - 1 = 0
<=> (x+1)(y-1) -1=0
<=> (x+1)(y-1) =1
Vì y khác 0 => y-1 khác -1
=> y-1 =1 và x+1=1
=> y=2và x =0
thay các giá trị x,y tương ứng ta thấy chúng ko thỏa mãn đề bài
Vậy ko tìm được x và y
Ừm.. hình như mình thấy đề bài hơi thiếu , bạm xem lại nhé
Chúc bạn học tốt
Vì \(ƯCLN\left(x,y\right)=15\)nên ta đặt \(x=15a,y=15b;\left(a,b\right)=1\).
\(x+y=15a+15b=15\left(a+b\right)=60\Leftrightarrow a+b=4\)
mà \(\left(a,b\right)=1\)nên ta có bảng giá trị:
a | 1 | 3 |
b | 3 | 1 |
x | 15 | 45 |
y | 45 | 15 |
Từ x + y = x.y = x : y
=> x.y = x : y
=> \(xy-\frac{x}{y}=0\Rightarrow x\left(y-\frac{1}{y}\right)=0\Rightarrow\orbr{\begin{cases}x=0\\y-\frac{1}{y}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y=\frac{1}{y}\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y=\pm1\end{cases}}\)
Nếu x = 0
Khi đó x + y = xy
=> 0 + y = 0.y
=> y = 0 (loại)
Nếu y = 1
=> x + y = xy
<=> x + 1 = x
=> 0x = -1 (loại)
Nếu y = - 1
=> x + y = xy
<=> x - 1 = -x
=> 2x = 1
=> x = 0,5 (tm)
Vậy x = 0,5 ; y = -1
\(x\cdot y=\frac{x}{y}\)
\(y\cdot y=\frac{x}{x}\)
\(y^2=1\)
\(y=\pm\sqrt{1}=\pm1\)
\(x+y=x\cdot y\)
TH1 : thế y = 1
\(x+1=x\cdot1\)
\(x+1=x\)
\(x-x=-1\)
\(0x=-1\left(sai\right)\)
Suy ra vô nghiệm x
TH 2 : Thế y = -1
\(x-1=x\cdot\left(-1\right)\)
\(x-1=-x\)
\(x+x=1\)
\(2x=1\)
\(x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\) ; y = -1
do X,Y là các số tự nhiên do đó X phải là ước của 3
do đó
\(\orbr{\begin{cases}X=1\Rightarrow Y-1=3\Rightarrow Y=4\\X=3\Rightarrow Y-1=1\Rightarrow Y=2\end{cases}}\)
vậy ta có hai cặp X,Y thỏa mãn là (1,4) và (3,2)
\(x.\left(y-1\right)\) = 3
\(x\) = \(\dfrac{3}{y-1}\) (đk y \(\ne\) 1)
\(x\in\) N \(\Leftrightarrow\) 3 ⋮ y - 1; y - 1 \(\in\) Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
y - 1 | - 3 | -1 | 1 | 3 |
y | -2 | 0 | 2 | 4 |
\(x\) = \(\dfrac{3}{y-1}\) | -3 | 3 | 1 | |
\(x;y\) \(\in\) N; y \(\ne\) 1 | thỏa mãn | thỏa mãn | ||
loại | loại |
Theo bài trên ta có:
(\(x;y\)) = (3; 2); (1; 4)
x + xy + y = 4
<=> x + xy + y + 1 = 4 + 1
<=> x(y + 1) + (y + 1) = 5
<=> (y + 1)(x + 1) = 5
=> y + 1 và x + 1 thuộc ước của 5
=> Ư(5) = { - 5; - 1; 1; 5 }
Ta có bảng sau :
x + 1 | -5 | -1 | 5 | 1 |
y + 1 | -1 | -5 | 1 | 5 |
x;y | -6;-2 | -2;-6 | 4;0 | 0;4 |
Vậy (x;y ) = { ( - 6; - 2 ); ( - 2; - 6 ) ; ( 4 ; 0 ); ( 0 ; 4 ) }
x+xy+y=4
x(1+y)+y=4
x(1+y)+(y+1)=4+1
(y+1)(x+1)=5
Ta có bảng giá trị sau
y+1 | -1 | -5 | 1 | 5 |
x+1 | -5 | -1 | 5 | 1 |
y | -2 | -6 | 0 | 4 |
x | -6 | -2 | 4 | 0 |
Vậy ta có các cặp giá trị x,y={(-2;-6),(-6;-2),(0;4),(4;0)}
nhớ k mik nha.THANKS
x(y+1 ) + 3y = 74
=> x ( y + 1 ) + 3y + 3 = 74 + 3
=> x ( y + 1 ) + 3 ( y + 1 ) = 77
=> ( x+ 3 )( y + 1 ) = 77
77 = 1.77 = 11.7 = 7.11 = 77.1
(+) x +3 = 1 và y + 1 = 77
=> x = -2 và y = 76 ( loại vì x ; y thuộc N )
(+) x + 3 = 7 và y + 1 = 11
=> x = 4 và y = 10 ( TM)
Tương tự xét hai trường hợp còn lại
ta có: \(x.y=x:y=\frac{x}{y}\Rightarrow x.y:\frac{x}{y}=1\)
mà \(x.y:\frac{x}{y}=\frac{x.y.y}{x}=y.y=y^2=1\Rightarrow y=\hept{\begin{cases}1\\-1\end{cases}}\)
ta có: \(x+y=x.y\Rightarrow\frac{x+y}{x.y}=1\)
mà \(\frac{x+y}{x.y}=\frac{x}{x.y}+\frac{y}{x.y}=\frac{1}{y}+\frac{1}{x}=1\)
nếu y = 1
\(\Rightarrow1+\frac{1}{x}=1\Rightarrow\frac{1}{x}=0\) => không tìm được x (vì không có mẫu số nào = 0)
nếu y = -1
\(\Rightarrow\left(-1\right)+\frac{1}{x}=1\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}\)
KL: x= 1/2; y = -1
khó thế