Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10xy5 chia hết cho 5. => x \(\in\left\{0;1;2;...;9\right\}\)
y \(\in\left\{0;1;2;...;9\right\}\)
(Dễ mà bạn. Số chia hết cho 5 tận cùng là 0 hoặc 5, mà đề bài có 10xy5 chia hết cho 5 rồi thì x và y là gì chẳng được.)
x và y là các số tự nhiên bất kì \(\left(x,y\in N\right)\)
Bởi vì chữ số tận cùng là 5
aba chia hết cho 33 => aba chia hết cho 11 và 3.
aba chia hết cho 11 => a+a-b=2a-b chia hết cho 11.
và aba chia hết cho 3 => a+a+b=2a+b chia hết cho 3.
xét a từ 1
a=1 => 2a-b=2-b chia hết cho 11 =>b=2; 2a+b=4 không chia hết cho 3 (loại).
a=2 => 2a-b=4-b chia hết cho 11 =>b=4; 2a+b=8 không chia hết cho 3 (loại).
a=3 => 2a-b=6-b chia hết cho 11 =>b=6; 2a+b=12 Chia hết cho 3 (nhận) aba=363.
a=4 => 2a-b=8-b chia hết cho 11 =>b=8; 2a+b=16 không chia hết cho 3 (loại).
a=5 => 2a-b=10-b chia hết cho 11 =>không tồn tại b;
a=6 => 2a-b=12-b chia hết cho 11 =>b=1; 2a+b=13 không chia hết cho 3 (loại).
a=7 => 2a-b=14-b chia hết cho 11 =>b=3; 2a+b=17 không chia hết cho 3 (loại).
a=8 => 2a-b=16-b chia hết cho 11 =>b=5; 2a+b=21 Chia hết cho 3 (nhận) aba=858.
a=9 => 2a-b=18-b chia hết cho 11 =>b=7; 2a+b=25 không chia hết cho 3 (loại).
Vậy có 2 số: là 363 và 858.
a,gọi ƯCLN(2n+1,3n+1)=d(d\(\inℕ^∗\))
\(\Rightarrow\)(2n+1)\(⋮\)d
(3n+1)\(⋮\)d
\(\Rightarrow\)(6n+3)\(⋮\)d
(6n+2)\(⋮\)d
\(\Rightarrow\)(6n+3-6n-2)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
Mà Ư(1)=1
\(\Rightarrow\)ƯCLN(2n+1,3n+1)=1
Vậy ƯCLN(2n+1,3n+1)=1
b,Còn phần b thì bn giải tương tự nhé
Họk tốt nha
mik chỉ bik 1 cách thôi xl nha
Giải
ta có:45=9.5
mà (5,9)=1 nên để 75x3y chia hết cho 45=>75x3y chia hết cho 9 và 5
75x3y chia hết cho 5=>y=0 hoặc y=5
với y=0 thì 75x3y chia hết cho 9=>7+5+x+0 chia hết cho 9
=>13+x chia hết cho 9
=>x=5
với y=5 thì 75x35 chia hết cho 9 =>7+5+x+3+5 chia hết cho 9
=>20+x chia hết cho 9
=>x=7
vậy các cặp số tự nhiên (x,y) thỏa mãn bài toán là:(0;5);(5;7)
cách 1 tớ làm được rồi còn cách 2 thôi