Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu $x,y$ là số tự nhiên, $xy=1$ thì chỉ xảy ra TH $x=y=1$
Khi đó:
$\frac{5x+7y}{6x+5y}=\frac{12}{11}\neq \frac{29}{28}$
Bạn xem lại đề nhé.
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
\(=\frac{1+3y+1+7y}{12+4x}=\frac{2+10y}{12+4x}\)
\(=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}\)
\(\Rightarrow\frac{1+5y}{5x}=\frac{1+5y}{6+2x}\)
\(\Rightarrow5x=6x+2x\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+5y}{5.2}=\frac{1+5y}{10}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)
\(\Rightarrow10+30y=12+60y\)
\(\Rightarrow30y=-2\)
\(\Rightarrow y=-\frac{1}{15}\)
Vậy \(x=2;y=-\frac{1}{15}\)
Ta có : \(\frac{x}{y}=\frac{2}{3}\Rightarrow x=\frac{2}{3}y\)
Thay \(x=\frac{2}{3}y\)vào A , ta được :
\(A=\frac{5.\frac{2}{3}y+3y}{6.\frac{2}{3}y-7y}\)
\(\Rightarrow A=\frac{\frac{10}{3}y+3y}{4y-7y}\)
\(\Rightarrow A=\frac{\left(\frac{10}{3}+3\right)y}{-3y}\)
\(\Rightarrow A=\frac{\frac{19}{3}y}{-3y}\)
\(\Rightarrow A=\frac{\frac{19}{3}}{-3}\)
\(\Rightarrow A=\frac{19}{3}.-\frac{1}{3}\)
\(\Rightarrow A=-\frac{19}{9}\)
Vậy \(A=-\frac{19}{9}\)
Vì \(\frac{6x+7y}{7x+9y}\)=\(\frac{58}{71}\)\(\Rightarrow\)\(\left(6x+7y\right)\times71=\left(7x+9y\right)\times58\)
\(\Rightarrow\)\(426x+497y=406x+522y\)\(\Rightarrow\)\(\left(426x+497y\right)-\left(406x+522y\right)=0\)\(\Rightarrow\)\(426x+497y-406x-522y=0\)\(\Rightarrow\)\(\left(426x-406x\right)+\left(497y-522y\right)=0\)\(\Rightarrow\)\(20x+\left(-25\right)y=0\)\(\Rightarrow\)\(20x-25y=0\)\(\Rightarrow\)\(20x=25y\)\(\Rightarrow\)\(x=\frac{5}{4}\times y\)
\(\Rightarrow\)\(x=\frac{5y}{4}\)
Để x là số tự nhiên => 5y phải chia hết cho 4 , mà (5,4) = 1 => y chia hết cho 4 => Đặt y = 4K ( \(k\inℕ\))
Vậy \(\hept{\begin{cases}x=\frac{5y}{4}\\y=4k\left(k\inℕ\right)\end{cases}}\)
Hoàng Thị Thanh Trúc
a,
\(\frac{x}{7}=\frac{6}{21}\Rightarrow x=\frac{6.7}{21}=2\)
b,
\(\frac{-5}{y}=\frac{20}{28}\Rightarrow y=\frac{\left(-5\right).28}{20}=-7\)