Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(272x-29=11^y\)
\(\Rightarrow11^y+29=272x\)
vì 11y luôn có chữ số tận cùng là 1 và 29 có chữ số tận cùng là 9
=> 11y + 29 có chữ số tận cùng là 0
=> 272x có chữ số tận cùng là 0
Vì x là số nguyên tố
=> x = 5
Thay x = 5 vào bài; ta có:
\(272.5-29=11^y\)
\(\Rightarrow11^y=1331=11^3\)
=> y = 3 ( thỏa mãn y là số nguyên tố )
Vậy x = 5 và y = 3
b: Để A là số nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4\right\}\)
hay \(x\in\left\{16;4;25;1;49\right\}\)
b) Ta có : 2x + 3y + 3xy = 7
=> 3y(1 + x) + 2x + 2 = 9
=> 3y(1 + x) + 2(x + 1) = 9
=> (x + 1)(3y + 2) = 9
=> x + 1 và 3y + 2 thuộc Ư(9) = {-9;-3;-1;1;3;9}
+) x + 1 = -9 thì 3y + 2 = -1
=> x = -10 ; y = -1
+) x + 1 = -1 thì 3y + 2 = -9
=> x = -2 ; y = \(\frac{-11}{3}\) (loại)
+) x + 1 = -3 thì 3y + 2 = -3
=> x = -4 ; y = \(-\frac{5}{3}\)(loại)
+) x + 1 = 1 thì 3y + 2 = 9
=> x = 0 thì y = \(\frac{7}{3}\)(loại)
+ x + 1 = 9 thì 3y + 2 = 1
=> x = 8 ; y = \(-\frac{1}{3}\)(Loại)
+ x + 1 = 3 thì 3y + 2 = 3
=> x = 2 ; y = \(\frac{1}{3}\)(Loại)
Vậy x = -10 và y = -1
ta có : x2 - (y-3)x - 2y - 1 =0 <=> x2 - xy +3x -2y -1 =0 <=> x2 +3x -1 = xy +2y
<=> x2 + 3x -1 =y(x+2) xét x=-2 không phải là nghiệm ( đoạn này để khẳng định \(x+2\ne0\)nhằm đưa x+2 xuống mẫu)
<=> \(\frac{x^2+3x-1}{x+2}=y\)
Vì \(y\in Z\) nên \(\frac{x^2+3x-1}{x+2}=y\) hay \(x^2+3x-1⋮x+2\) <=> \(\left(x+2\right).\left(x+1\right)-3⋮x+2\)
hay \(-3⋮x+2\)(vì\(\left(x+2\right).\left(x+1\right)⋮x+2\)
=>\(x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\) <=> \(x\in\left\{-5;-3;-1;1\right\}\)
=> x=-5 =>y= -3
x=-3 =>y=1
x=-1 =>y-3
x=1 =>y=1