Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11=1x11=11x1=-1x-11=-11x-1
TH1:
2x-1=1 y+4=11
2x=2 y=7
x=1
TH2:
2x-1=11 y+4=1
2x=12 y=-5
x=6
TH3:
2x-1=-1 y+4=-11
2x=-2 y=-15
x=-1
TH4:
2x-1=-11 y+4=-1
2x=-10 y=-5
x=-5
xy-2y+x-2=7
=>y(x-2)+x-2=7
=>(y+1)(x-2)=7
mình chỉ giúp đến đây thôi tự giải tiếp nhé
Lời giải:
$2x-xy+3y=9$
$\Rightarrow x(2-y)+3y=9$
$\Rightarrow x(2-y)-3(2-y)=3$
$\Rightarrow (2-y)(x-3)=3$
Do $x,y$ là số nguyên nên $2-y, x-3$ cũng là số nguyên. Mà tích của chúng bằng 3 nên ta có các TH sau:
TH1: $2-y=1, x-3=3\Rightarrow y=1, x=6$ (tm)
TH2: $2-y=-1, x-3=-3\Rightarrow y=3; x=0$ (loại do $x$ nguyên dương)
TH3: $2-y=3, x-3=1\Rightarrow y=-1$ (loại do $y$ nguyên dương)
TH4: $2-y=-3; x-3=-1\Rightarrow y=5; x=2$ (thỏa mãn)
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
`xy-x+y-3=0`
`=>x(y-1)+y-1-2=0`
`=>(y-1)(x+1)=2=2.1=(-1).(-2)`
`@x+1=2` và `y-1=1`
`x=1` và `y=2`
`@x+1=1` và `y-1=2`
`x=0` và `y=3`
`@x+1=-1` và `y-1=-2`
`x=-2` và `y=-1`
`@x+1=-2` và `y-1=-1`
`x=-3` và `y=0`
\(xy-x+y-3=0\\ =>x\left(y-1\right)+\left(y-1\right)-2=0\\ =>\left(x+1\right)\left(y-1\right)=2\)
\(+,TH1:\)
\(\left\{{}\begin{matrix}x+1=2\\y-1=1\end{matrix}\right.=>\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(+,TH2:\\ \left\{{}\begin{matrix}x+1=1\\y-1=2\end{matrix}\right.=>\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
\(+,TH3:\\ \left\{{}\begin{matrix}x+1=-1\\y-1=-2\end{matrix}\right.=>\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\\ +,TH4:\\ \left\{{}\begin{matrix}x+1=-2\\y-1=-1\end{matrix}\right.=>\left\{{}\begin{matrix}x=-3\\y=0\end{matrix}\right.\)
Ta có: x + y + xy = 4
=> x(1 + y) + y = 4
=> x(1 + y) + (1 + y) = 5
=> (x + 1)(1 + y) = 5
=> x + 1; 1 + y \(\in\)Ư(5) = {1; -1; 5; -5}
Lập bảng :
x + 1 | 1 | -1 | 5 | -5 |
1 + y | 5 | -5 | 1 | -1 |
x | 0 | -2 | 4 | -6 |
y | 4 | -6 | 0 | -2 |
Vậy ...
Đoạn (x+1)(y-1)=0 thì dấu phía sau là dấu hoặc (chứ không phải dấu và) bạn ơi.
\(xy\) - \(x\) + \(y\) = 1
(\(xy\) + \(y\)) - \(x\) - 1 = 0
\(y\)(\(x\) + 1) - ( \(x\) + 1) = 0
(\(x\) + 1)( \(y\) - 1) = 0
\(\left[{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
x+xy+y=9
<=>x+xy+y+1=10
<=>x(y+1)+(y+1)=10
<=>(x+1)(y+1)=10
=> +,
+,
+,
Từ đó ta tìm được các cặp (x;y)thoã mãn:
(1;4) ; (0;9) ; (-3;-6) ; (-2;-11) ; (4;1) ; (9;0) ; (-6;-3) ; (-11;-2)