\(\sqrt{x+2\sqrt{3}}=\sqrt{x}+\sqrt{y}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2015

\(pt\Leftrightarrow x+2\sqrt{3}=x+y+2\sqrt{xy}\)

Vì x, y nguyên nên x và x+y nguyên, mà 2 căn 3 là số vô tỉ nên 2 căn xy cũng phải là số vô tỉ

=> 2 căn 3 = 2 căn xy <=> 3 = xy (*)

Ta cũng có x = x+y => y = 0, không thỏa mãn (*)
Vậy pt không có nghiệm nguyên
 

27 tháng 10 2017

\(\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\)

\(\left(\sqrt{x+y+3}\right)^2=\left(\sqrt{x}+\sqrt{y}-1\right)^2\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}-\sqrt{xy}+1=0\)

\(\Leftrightarrow\left(1-\sqrt{x}\right)\left(\sqrt{y}-1\right)=-2\)

Xong

22 tháng 12 2023

Sai nha! Đề cho x, y nguyên chứ không cho căn(x), căn(y) nguyên.

30 tháng 7 2017

Bạn trừ đi rồi gộp thành hằng đẳng thức là được nhé

8 tháng 8 2016

a) Cách 1:

\(pt\Leftrightarrow\hept{\begin{cases}y\ge0\\y^2=\left(x+2\right)^2+1\text{ (1)}\end{cases}}\)

\(\left(1\right)\Leftrightarrow\left[y+x+2\right]\left[y-\left(x+2\right)\right]=1\)

\(\Leftrightarrow\left(y+x+2\right)\left(y-x-2\right)=1\)

\(\Rightarrow\hept{\begin{cases}y+x+2=1\\y-x-2=1\end{cases}}\)hoặc \(\hept{\begin{cases}y+x+2=-1\\y-x-2=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)(nhận) hoặc \(\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)(loại)

Cách 2: Để y nguyên thì biểu thức trong căn phải là một số chính phương

\(A=x^2+4x+5=\left(x+2\right)^2+1=t^2+1\)

+Với \(t=0\) thì \(A=1=1^2\), là một số chính phương --> thỏa

+Với \(t>0\), ta có: \(t^2< t^2+1< \left(t+1\right)^2\)(chứng minh bằng biến đổi tương đương)

A là một số nằm giữa hai số chính phương liên tiếp nên A ko thể là số chính phương --> loại

+Với \(t< 0\) thì \(t^2< t^2+1< \left(t-1\right)^2\)(chứng minh bằng biến đổi tương đương)

A là một số nằm giữa hai số chính phương liên tiếp nên A ko thể là số chính phương --> loại

Vậy t chỉ có thể bằng 0;

\(t=0\Leftrightarrow\hept{\begin{cases}x+2=0\\y=\sqrt{0^2+1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

8 tháng 8 2016

a/ y= (x+2)2 +1 <=> (y-x-2)(y+x+2)=1 vì x,y nguyên nên 2 đa thức ở vế trái cùng bằng 1 hoặc -1

2 tháng 7 2017

\(\sqrt{x}+\sqrt{y}=3\sqrt{222}\)

\(3\sqrt{222}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{222}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in Z\)

\(\Rightarrow\)  \(a+b=3\)

Xét 4 TH:

-   Nếu a = 0 thì b = 3

-   Nếu a = 1 thì b = 2

-   Nếu a = 2 thì b = 1

-   Nếu a = 3 thì b = 0

Từ đó dễ dàng tìm được x, y

2 tháng 7 2017

:)) Giải thích kiểu này .
bài 2đ
BGK chỉ chấm 1 đ  thôi!!!^^
:)) Mình đã từng làm như vậy cô giáo cho mình  như vậy.

31 tháng 5 2019

b, Ta có 

\(\frac{\sqrt{x}+1}{y+1}=\frac{\left(\sqrt{x}+1\right)\left(y+1\right)-y-y\sqrt{x}}{y+1}=\sqrt{x}+1-\frac{y\left(\sqrt{x}+1\right)}{y+1}\)

Mà \(y+1\ge2\sqrt{y}\)

=> \(\frac{\sqrt{x}+1}{y+1}\ge\sqrt{x}+1-\frac{1}{2}\sqrt{y}\left(\sqrt{x}+1\right)\)

Khi đó

\(P\ge\frac{1}{2}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3-\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{3}=3\)

=> \(P\ge\frac{1}{2}.3+3-\frac{3}{2}=3\)

Vậy MinP=3 khi x=y=z=1