Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.
Giả sử số lẻ đó là x thì ta có
\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)
\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)
\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)
Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm
b/ \(9x^2+2=y^2+y\)
\(\Leftrightarrow36x^2+8=4y^2+4y\)
\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)
\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
Ta có : x+2xy-4y=14
x+2y.(x-2)=14
(x-2)+2y.(x-2)+2=14
(x-2).(2y+1)=14-2
(x-2).(2y+1)=12
Do 2y+1 là số lẻ nên 2y+1 là Ước lẻ của 12
Các Ước lẻ của 12 là -3;-1;1;3
Bạn làm tiếp nhé
b) Vì \(VT=25-y^2\le25\) nên \(VP=8\left(x-2012\right)^2\le25\Rightarrow\left(x-2012\right)^2\le\frac{25}{8}\)
Mà \(x\in Z\Rightarrow\left(x-2012\right)^2\in Z\) Hay \(\orbr{\begin{cases}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{cases}}\)
Xét \(\left(x-2012\right)^2=0\Rightarrow x=2012\)
\(\Rightarrow25-y^2=0\Rightarrow\orbr{\begin{cases}y=-5\\y=5\end{cases}}\)(TM)
Xét \(\left(x-2012\right)^2=1\) thay vào ta được \(25-y^2=8\Rightarrow y^2=17\)(loại)
Vậy \(\left(x;y\right)=\left\{\left(2012;-5\right);\left(2012;5\right)\right\}\)
\(2x+\frac{1}{5}=\frac{1}{y}\)
\(\Leftrightarrow\frac{10x+1}{5}=\frac{1}{y}\)
\(\Leftrightarrow\left(10x+1\right)y=5\)
ta cs bảng sau:
y | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 |
10x+1 | -1 | -5/4 | -5/3 | -5/2 | -5 | 5 | 5/2 | 5/3 | 5/4 | 1 |
x | -1/5 | -9/40 | -4/15 | -7/20 | -3/5 | 2/5 | 3/20 | 1/15 | 1/40 | 0 |
vậy....
Ta có : \(\left(2x-5\right)^{2012}\ge0\forall x\)
\(\left(3y+4\right)^{2014}\ge0\forall y\)
\(\rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\ge0\forall x,y\)
Theo bài : \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0\)
\(\rightarrow\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}=0\)
\(\rightarrow\left(2x-5\right)^{2012}=0,\left(3y+4\right)^{2014}=0\)
\(\rightarrow2x-5=0,3y+4=0\)
\(\rightarrow x=\frac{5}{2};y=\frac{-4}{3}\)
Tự tìm M nhé bạn
1, M + (5x2-2xy)= 6x2+9xy-y2
M =(6x2+9xy-y2)- (5x2-2xy)
M = 6x2+9xy-y2-5x2+2xy
M = (6x2-5x2)+(9xy+2xy)-y2
M = x2+11xy-y2
Ta có : 2xy - 5 = 2x2 + y
\(\implies\) 2xy - 2x2 - y = 5
\(\implies\) ( 2xy - y ) - 2x2 = 5
\(\implies\) y ( 2x - 1 ) - 2x2 = 5
\(\implies\) 2y ( 2x - 1 ) - 4x2 = 10
\(\implies\) 2y ( 2x -1 ) - ( 2x )2 = 10
\(\implies\) 2y ( 2x - 1 ) - ( 2x )2 + 1 = 11
\(\implies\) 2y ( 2x - 1 ) - [ ( 2x )2 - 1 ] = 11
\(\implies\) 2y ( 2x - 1 ) - ( 2x - 1 ) ( 2x + 1 ) =11
\(\implies\) ( 2x - 1 ) [ 2y - ( 2x + 1 ) ] = 11
\(\implies\) 2x - 1 ; 2y - ( 2x + 1 ) \(\in\) Ư ( 11 ) = { 1 ; -1 ; 11 ; -11 }
Ta có bảng sau :
Vậy ( x ; y ) \(\in\) { (1 ; 7 ), ( 0 ; -5 ) , ( 6 ; 7 ) , (-5 ; -5 ) }