\(\ge\)2 sao cho:

xy-1\(⋮\) (x-1). (y-1)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

Ta có: xy-1=(x-1)y + (y-1)  (y-1) => (x-1)  (y-1) (1)

Biến đổi tương tự, có: xy-1=(y-1)x+(x-1)  (x-1) => (y-1)  (x-1)  (2)

Từ (1) và (2) suy ra: x-1=y-1 hoặc x-1=-(y-1)

đến đây dễ rồi, bạn tự giải tiếp nhé!

17 tháng 3 2019

Thứ nhất : là bài 3 bạn ghi đề bị thiếu . 

Thứ hai : là mình đã tốn thời gian giải cho bạn rồi nên đừng tiếc thời gian để k cho mình nếu mình đúng

Thứ 3 : mong các thành phần chuyên sao chép lời giải người khác và đăng lên , thậm chí là giống như đúc đừng sao chép bài của mình nhé .

Giải : 

1, Ta có : \(y\sqrt{x}-3y=\sqrt{x}+1\Rightarrow y\left(\sqrt{x}-3\right)=\sqrt{x}+1\)

\(\Rightarrow y\left(\sqrt{x}-3\right)-\left(\sqrt{x}+1\right)=0\Rightarrow y\left(\sqrt{x}-3\right)-\sqrt{x}-1=0\)

\(y\left(\sqrt{x-3}\right)-\sqrt{x}+3-4=0\Rightarrow y\left(\sqrt{x-3}\right)-\left(\sqrt{x-3}\right)-4=0\)

\(\left(\sqrt{x}-3\right)\left(y-1\right)-4=0\)

\(\left(\sqrt{x}-3\right)\left(y-1\right)=4\)

Vì y thuộc Z nên y-1 thuộc Z => \(\left(\sqrt{x}-3\right)\in Z\)

Ta có bảng : 

\(\sqrt{x}-3\)\(1\)\(4\)\(-1\)\(-4\)\(2\)\(-2\)
\(y-1\)\(4\)\(1\)\(-4\)\(-1\)\(2\)\(-2\)
\(x\)\(2\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(1\)

\(y\)

\(5\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(-1\)

Vậy các cặp x,y thỏa mãn là (2;5) và (1;-1)

2,Ta có \(y\sqrt{x}-\sqrt{x}=1-y\Rightarrow\sqrt{x}\left(y-1\right)+y-1=0\Rightarrow\left(y-1\right)\left(\sqrt{x}+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\\sqrt{x}+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x\in\varnothing\end{cases}}}\)

Vậy \(y=1,x\in\varnothing\)

17 tháng 3 2019

Không hẳn là cách khác nhưng cứ xem cho vui=)

1/\(y\left(\sqrt{x}-3\right)=\sqrt{x}+1\Leftrightarrow y=1+\frac{4}{\sqrt{x}-3}\)

Để y nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Bài toán trở về dạng quen thuộc.

2/ \(\sqrt{x}\left(y-1\right)=1-y\)

Với y = 1 thì \(\sqrt{x}.0=0\) (luôn đúng)

Với y khác 1:

\(\sqrt{x}\left(y-1\right)=1-y\Rightarrow\sqrt{x}=\frac{1-y}{y-1}=\frac{-1\left(y-1\right)}{y-1}=-1\)(vô lí vì \(\sqrt{x}\ge0\))

Vậy x tùy ý; y = 1

3/ Thiếu đề.

28 tháng 9 2016

x=2; y = 2; z =1

z=2; y =2; x =1

x = 2; z=2; y =1

1 tháng 12 2019

Làm kiểu gì vậy bạn 

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

22 tháng 6 2017

a, \(\left[x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\right]x^2-1\)

\(=\left[x\left(x^2-16\right)-\left(x^2+1\right)\right]x^2-1\)

\(=\left[x^3-16x-x^2-1\right]x^2-1\)

\(=x^5-16x^3-x^4-x^2-1\)

b, \(\left(y-3\right)y+3y^2+9-y^2+2\left(y^2-2\right)\)

\(=y^2-3y+3y^2+9-y^2+2y^2-4\)

\(=5y^2-3y+5\)

c, \(\left(x+y\right)\left(x^2x^2-xy+y^2\right)\)

\(=x^5-x^2y+xy^2+x^4y-xy^2+y^3\)

d, \(\left(\dfrac{1}{2}xy+\dfrac{3}{4}y\right).\dfrac{1}{2}xy-\dfrac{3}{4}y\)

\(=\dfrac{1}{4}x^2y^2+\dfrac{3}{8}xy^2-\dfrac{3}{4}y\)

\(=\dfrac{1}{4}y.\left(x^2y+\dfrac{3}{2}xy-3\right)\)

Chúc bạn học tốt!!!

22 tháng 6 2017

ban dùng tính chất phân phối ko