Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thứ nhất : là bài 3 bạn ghi đề bị thiếu .
Thứ hai : là mình đã tốn thời gian giải cho bạn rồi nên đừng tiếc thời gian để k cho mình nếu mình đúng
Thứ 3 : mong các thành phần chuyên sao chép lời giải người khác và đăng lên , thậm chí là giống như đúc đừng sao chép bài của mình nhé .
Giải :
1, Ta có : \(y\sqrt{x}-3y=\sqrt{x}+1\Rightarrow y\left(\sqrt{x}-3\right)=\sqrt{x}+1\)
\(\Rightarrow y\left(\sqrt{x}-3\right)-\left(\sqrt{x}+1\right)=0\Rightarrow y\left(\sqrt{x}-3\right)-\sqrt{x}-1=0\)
\(y\left(\sqrt{x-3}\right)-\sqrt{x}+3-4=0\Rightarrow y\left(\sqrt{x-3}\right)-\left(\sqrt{x-3}\right)-4=0\)
\(\left(\sqrt{x}-3\right)\left(y-1\right)-4=0\)
\(\left(\sqrt{x}-3\right)\left(y-1\right)=4\)
Vì y thuộc Z nên y-1 thuộc Z => \(\left(\sqrt{x}-3\right)\in Z\)
Ta có bảng :
\(\sqrt{x}-3\) | \(1\) | \(4\) | \(-1\) | \(-4\) | \(2\) | \(-2\) |
\(y-1\) | \(4\) | \(1\) | \(-4\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(1\) |
\(y\) | \(5\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(\varnothing\) | \(-1\) |
Vậy các cặp x,y thỏa mãn là (2;5) và (1;-1)
2,Ta có \(y\sqrt{x}-\sqrt{x}=1-y\Rightarrow\sqrt{x}\left(y-1\right)+y-1=0\Rightarrow\left(y-1\right)\left(\sqrt{x}+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-1=0\\\sqrt{x}+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x\in\varnothing\end{cases}}}\)
Vậy \(y=1,x\in\varnothing\)
Không hẳn là cách khác nhưng cứ xem cho vui=)
1/\(y\left(\sqrt{x}-3\right)=\sqrt{x}+1\Leftrightarrow y=1+\frac{4}{\sqrt{x}-3}\)
Để y nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Bài toán trở về dạng quen thuộc.
2/ \(\sqrt{x}\left(y-1\right)=1-y\)
Với y = 1 thì \(\sqrt{x}.0=0\) (luôn đúng)
Với y khác 1:
\(\sqrt{x}\left(y-1\right)=1-y\Rightarrow\sqrt{x}=\frac{1-y}{y-1}=\frac{-1\left(y-1\right)}{y-1}=-1\)(vô lí vì \(\sqrt{x}\ge0\))
Vậy x tùy ý; y = 1
3/ Thiếu đề.
a
Nếu \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)
Nếu \(y>0\Rightarrow3^y⋮3\)
Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý
Vậy.....
b
Không mất tính tổng quát giả sử \(x\ge y\)
Ta có:
\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)
\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)
Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )
Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)
Vậy x=4;y=2 và các hoán vị
a, \(\left[x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\right]x^2-1\)
\(=\left[x\left(x^2-16\right)-\left(x^2+1\right)\right]x^2-1\)
\(=\left[x^3-16x-x^2-1\right]x^2-1\)
\(=x^5-16x^3-x^4-x^2-1\)
b, \(\left(y-3\right)y+3y^2+9-y^2+2\left(y^2-2\right)\)
\(=y^2-3y+3y^2+9-y^2+2y^2-4\)
\(=5y^2-3y+5\)
c, \(\left(x+y\right)\left(x^2x^2-xy+y^2\right)\)
\(=x^5-x^2y+xy^2+x^4y-xy^2+y^3\)
d, \(\left(\dfrac{1}{2}xy+\dfrac{3}{4}y\right).\dfrac{1}{2}xy-\dfrac{3}{4}y\)
\(=\dfrac{1}{4}x^2y^2+\dfrac{3}{8}xy^2-\dfrac{3}{4}y\)
\(=\dfrac{1}{4}y.\left(x^2y+\dfrac{3}{2}xy-3\right)\)
Chúc bạn học tốt!!!
Ta có: xy-1=(x-1)y + (y-1) ⋮⋮ (y-1) => (x-1) ⋮⋮ (y-1) (1)
Biến đổi tương tự, có: xy-1=(y-1)x+(x-1) ⋮⋮ (x-1) => (y-1) ⋮⋮ (x-1) (2)
Từ (1) và (2) suy ra: x-1=y-1 hoặc x-1=-(y-1)
đến đây dễ rồi, bạn tự giải tiếp nhé!