\(xy-3x+y=6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

Ta có: xy - 3x + y = 6

=> x(y - 3) + (y - 3) = 3

=> (x + 1)(y - 3) = 3

=> x + 1; y - 3 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng :

x + 1 1 -1 3 -3
y - 3 3 -3 1 -1
  x 0 -2 2 -4
  y 6 0  4 2

Vậy ...

15 tháng 7 2019

xy - 3x + y = 6

=> x(y - 3) + y - 3 = 6 - 3

=> x(y - 3) + 1(y - 3) = 3

=> (x + 1)(y - 3) = 3

=> x + 1; y - 3 thuộc Ư(3) = {-1; 1; -3; 3}

ta có bảng :

x+1-11-33
y-3-33-11
x-20-42
y0624

vậy_

23 tháng 3 2018

1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)

\(36x+20-4n^2+4n\)

\(\Rightarrow36x+21=4n^2+4n+1\)

\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)

\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)chia hết cho 9

Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9

Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)

23 tháng 3 2018

2) Ta có: xy + 3x - y = 6 =>x(y+3) - y = 6 

=>x(y+3) - y - 3 = 3 =>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3 -1 13
y-6-4-20
x-1-1-331
x0-242
18 tháng 10 2017

a, Gọi A = \(\frac{4a+2b-c}{a-b-c}\)

Đặt \(\frac{a}{2}=\frac{b}{5}=\frac{c}{7}=k\Rightarrow\hept{\begin{cases}a=2k\\b=5k\\c=7k\end{cases}}\)

=>A = \(\frac{4a+2b-c}{a-b-c}=\frac{8k+10k-7k}{2k-5k-7k}=\frac{11k}{-10k}=\frac{-11}{10}\)

b, Ta có: \(\hept{\begin{cases}x^2\ge0\\\left|y-3\right|\ge0\end{cases}\forall x,y\Rightarrow A=x^2+\left|y-3\right|+5}\ge5\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2=0\\\left|y-3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\)

Vậy MinA = 5 khi x = 0 và y = 3

c, xy + 3x - y = 6

<=> xy + 3x - y - 3 = 3

<=> x(y + 3) - (y + 3) = 3

<=> (x - 1)(y + 3) = 3

=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}

Ta có bảng:

x-11-13-3
y+33-31-1
x204-2
y0-6-2-4

Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)

7 tháng 11 2017

a, Gọi A = 4a+2b−ca−b−c 

Đặt a2 =b5 =c7 =k⇒{

a=2k
b=5k
c=7k

=>A = 4a+2b−ca−b−c =8k+10k−7k2k−5k−7k =11k−10k =−1110 

b, Ta có: {

x2≥0
|y−3|≥0
 

∀x,y⇒A=x2+|y−3|+5≥5

Dấu "=" xảy ra khi {

x2=0
|y−3|=0

⇒{

x=0
y=3

Vậy MinA = 5 khi x = 0 và y = 3

c, xy + 3x - y = 6

<=> xy + 3x - y - 3 = 3

<=> x(y + 3) - (y + 3) = 3

<=> (x - 1)(y + 3) = 3

=> x - 1 và y + 3 thuộc Ư(3) = {1;-1;3;-3}

Ta có bảng:

x-11-13-3
y+33-31-1
x204-2
y0-6-2-4

Vậy các cặp (x;y) là (2;0) ; (0;-6) ; (4;-2) ; (-2;-4)

6 tháng 3 2019

câu b

x+y=xy

x+y-xy=0

x(1-y)+y-1=-1

(y-1)(1-x)=-1=-1*1=1*-1

thay vào rồi tính thôi bn

cộng cả 2 vế với 1 cũng được mà

30 tháng 6 2018

Có 2 TH

\(TH1:3x>y\)

\(\Rightarrow xy+3x-y=6\)

\(\Rightarrow x\left(y+3\right)-y-3=6-3=3\)

\(\Rightarrow\left(x-1\right)\left(y+3\right)=3\)

Ta có bảng sau :

x-113-1-3
y+331-3-1
x240-2
y0-2-6-4

Vậy có các cặp (x;y)=(2;0);(4;-2);(0;-6);(-2;-4)

\(TH2:3x< y\)

\(\Rightarrow xy+y-3x=6\)

\(\Rightarrow x\left(y-3\right)+y=6\)

\(\Rightarrow\left(x+1\right)\left(y-3\right)=3\)

Ta có bảng sau :

x+113-1-3
y-331-3-1
x02-2-4
y6402

Vậy ta có các cặp (x;y)=(0;6);(2;4);(-2;0);(-4;2)

30 tháng 6 2018

\(TH1:x\ge\frac{y}{3}\) PT có dạng : \(xy+3x-y=6\)

\(\Leftrightarrow x\left(y+3\right)-\left(y+3\right)=3\Leftrightarrow\left(x-1\right)\left(y+3\right)=3\)

Lập bảng hoặc xét từng giá trị ta được \(\left(x;y\right)=\left\{\left(2;0\right);\left(0;-6\right);\left(4;-2\right)\right\}\)

\(TH2:x< \frac{y}{3}\) Tương tự

2 tháng 3 2020

\(\frac{3x-2}{8}=\frac{5y+6}{3}=\frac{3x-5y-8}{8-3}=\frac{3x-5y-8}{5}\)

\(+,3x=5y+8\Rightarrow\frac{5y+6}{8}=\frac{5y+6}{3}\Rightarrow y=-\frac{6}{5}\Rightarrow x=\frac{2}{3}\)

\(+,3x\ne5y+8\Rightarrow5=10x\Leftrightarrow x=\frac{1}{2}\Rightarrow\frac{-1}{16}=\frac{5y+6}{3}\Rightarrow....\)

2 tháng 3 2020

\(xy+x+y+1=5\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=5\Leftrightarrow\left(x+1\right)\left(y+1\right)=5\)

x;y nguyên nên đến đây dễ rồi

1 tháng 11 2017

Ta có : xy - 3x + y =3

           x(y - 3) + y - 3 = 0

           (y - 3)(x+1) = 0

=> y - 3 = 0 hoặc x + 1 = 0

Còn lại bạn tự giải nhé

           

8 tháng 7 2016

a) \(\Leftrightarrow\frac{9+x}{3x}=\frac{y}{3}\Leftrightarrow\frac{9+x}{3x}=\frac{xy}{3x}\)

\(\Leftrightarrow\) 9 + x = xy. Có nhiều x;y thỏa mãn với điều kiện 9 + x = xy

b) c) tương tự

18 tháng 10 2016

1. Theo t/c của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{90}{10}=9\)

\(\frac{x}{2}=9\Rightarrow x=9.2=18\)

\(\frac{y}{5}=9\Rightarrow y=9.5=45\)

Vậy x = 18 ; y = 45 

18 tháng 10 2016

sai rùi