Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-xy+y=6\Leftrightarrow x\left(1-y\right)=6-y\Leftrightarrow x=\frac{6-y}{1-y}\)(1)
Để x nhận giá trị nguyên thì \(6-y⋮1-y\). Mà \(1-y⋮1-y\)
Suy ra \(6-y-\left(1-y\right)⋮1-y\Rightarrow5⋮1-y\). Lại có 1-y thuộc Z
Nên \(1-y\in\left\{1;5;-1;-5\right\}\Rightarrow y\in\left\{0;-4;2;6\right\}\)
Thay các giá trị của y vào (1), ta có: \(y=0\Rightarrow x=6\)\(;\) \(y=-4\Rightarrow x=2\)
\(y=2\Rightarrow x=-4;y=6\Rightarrow x=0\)
Vậy \(\left(x;y\right)\in\left\{\left(6;0\right);\left(2;-4\right);\left(-4;2\right);\left(0;6\right)\right\}.\)
Ta có: \(\frac{x+y}{16}=\frac{x-y}{18}\)
=> 18(x + y) = 16(x - y)
=> 18x + 18y = 16x - 16y
=> 18x - 16x = -16y - 18y
=> 2x = -34y
=> x = -17y
Khi đó: \(\frac{-17y+y}{16}=\frac{-17y.y}{17}\)
=> \(\frac{-16y}{16}=-y^2\)
=> \(-y+y^2=0\)
=> y(y - 1) = 0
=> \(\orbr{\begin{cases}y=0\\y-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Với y = 0 => x = -17.0 = 0
y= 1 => x = -17 . 1 = -17
Vậy ....
x+y=xy
<=> x-xy+y=0
<=> x(1-y)-(1-y)=-1
<=> (1-y)(x-1)=-1
Vì x;y là số nguyên
=> 1-y;x-1 là số nguyên
=> tự làm nốt
x+xy-\(x^2\)+y=1
<=>xy+y=\(x^2\)-x+1(*)
.Nếu x+1=0=>x=-1=>0.y=3->vô lí
Nếu x+1\(\ne\)0=>y=\(\frac{x^2-x+1}{x+1}=\frac{x^2+x-2x+1}{x+1}=\frac{x^2+x}{x+1}+\frac{-2x+1}{x+1}\)=\(\frac{x\left(x+1\right)}{x+1}+\frac{-2x+1}{x+1}\)
=x+\(\frac{-2x-2+3}{x+1}=x+\frac{-2\left(x+1\right)}{x+1}+\frac{3}{x+1}=x-2+\frac{3}{x+1}\in Z\)<=>\(\frac{3}{x+1}\in Z\Leftrightarrow x+1\inƯ\left(3\right)\)
phần này tự làm vì nó dễ
học tốt!
a Ta có
xy -x-y=-1
=> x(y-1)-(y-1)=0
=> (y-1)(x-1)=0
=> + y-1 =0 và x-1 thỏa mãn với mọi số nguyên
+ x-1=0 và y-1 thỏa mãn với mọi số nguyên
Ta có: \(x+xy-x^2+y=1\Leftrightarrow xy+y=x^2+1-x\)
\(\Leftrightarrow y\left(x+1\right)=x^2-x+1\)
Với \(x=-1\Rightarrow x^2-x+1=0\) (vô lý vì \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\))
Với \(x\ne-1\Rightarrow y=\frac{x^2-x+1}{x+1}\)
Do \(y=\frac{x^2+x-2\left(x+1\right)+3}{x+1}=x-2+\frac{3}{x+1}\in Z\)
\(\Rightarrow\frac{3}{x+1}\in Z\)ta có bảng sau:
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y | 1 | -7 | 1 | -7 |
Ta có: \(xy+x+y=18\)
\(x.\left(y+1\right)+y=18\)
\(x.\left(y+1\right)+y+1=18+1\)
\(\left(x+1\right).\left(y+1\right)=19\)
Mà \(x,y\in Z\Rightarrow x+1;y+1\in Z\)
Lại có \(19=1.19=19.1=\left(-1\right).\left(-19\right)=\left(-19\right).\left(-1\right)\)
Tự tìm x,y
Theo bài ra ta có :
xy + x + y = 18
y (x + 1 ) + ( x + 1 )= 18 - 1
( x + 1 ) . ( y + 1 ) = 17
=> x + 1 , y + 1 € Ư (17)
| Tự làm |
#Tề _ Thiên