
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


suy ra x.(y-2)-3.(y-2)+6+1=0
suy ra (x-3).(y-2)=-7
suy ra x-3;y-2 thuộc Ư(-7)
tự lập bảng tự tính

=>xy-2y=5
=>y(x-2)=5
=>y,x-2\(\in\)Ư(5)={1;5;-1;-5}
Ta có bảng kết quả:
y | 1 | 5 | -1 | -5 |
x-2 | 5 | 1 | -5 | -1 |
x | 7 | 3 | -3 | 1 |
Vậy các bội số (x;y) nguyên cần tìm là:
(x;y)\(\in\){(1;7);(5;3);(-1;-3);(-5;1)}

1: xy+x+y+1=0
=>x(y+1)+(y+1)=0
=>(x+1)(y+1)=0
=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)
2: xy+x+6=0
=>x(y+1)=-6
=>(x;y+1)∈{(1;-6);(-6;1);(-1;6);(6;-1);(2;-3);(-3;2);(-2;3);(3;-2)}
=>(x;y)∈{(1;-7);(-6;0);(-1;5);(6;-2);(2;-4);(-3;1);(-2;2);(3;-3)}
3: -xy-x-y-1=0
=>xy+x+y+1=0
=>x(y+1)+(y+1)=0
=>(x+1)(y+1)=0
=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)
4: xy-x-y+1=0
=>x(y-1)-(y-1)=0
=>(x-1)(y-1)=0
=>\(\begin{cases}x-1=0\\ y-1=0\end{cases}\Rightarrow\begin{cases}x=1\\ y=1\end{cases}\)
5: xy+2x+y+11=0
=>x(y+2)+y+2+9=0
=>x(y+2)+(y+2)=-9
=>(x+1)(y+2)=-9
=>(x+1;y+2)∈{(1;-9);(-9;1);(-1;9);(9;-1);(3;-3);(-3;3)}
=>(x;y)∈{(0;-11);(-10;-1);(-2;7);(8;-3);(2;-5);(-4;1)}
6: ĐKXĐ: x<>0
\(\frac{5}{x}+\frac{y}{4}=\frac18\)
=>\(\frac{20+xy}{4x}=\frac18\)
=>\(\frac{40+2xy}{8x}=\frac{x}{8x}\)
=>40+2xy=x
=>x-2xy=40
=>x(1-2y)=40
=>x(2y-1)=-40
mà 2y-1 lẻ(do y nguyên)
nên (x;2y-1)∈{(-40;1);(40;-1);(8;-5);(-8;5)}
=>(x;2y)∈{(-40;2);(40;0);(8;-4);(-8;6)}
=>(x;y)∈{(-40;1);(40;0);(8;-2);(-8;3)}
8: (x+2)(y-3)=-3
=>(x+2;y-3)∈{(1;-3);(-3;1);(-1;3);(3;-1)}
=>(x;y)∈{(-1;0);(-5;4);(-3;6);(1;2)}

\(xy+x-2y+1=0\)
\(\Leftrightarrow\left(xy+x\right)-\left(2y+2\right)=-3\)
\(\Leftrightarrow x\left(y+1\right)-2\left(y+1\right)=-3\)
\(\Leftrightarrow\left(x-2\right)\left(y+1\right)=-3\)
Đến đây lập bảng ra
Làm nốt !
\(x.y+x-2y+1=0\)
\(\Rightarrow x\left(y+1\right)+2\left(y+1\right)=0\)
\(\Rightarrow\left(x+2\right).\left(y+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+2=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)
Vậy x=-2;y=-1

d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath