Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: xy-x+y=6
=> x(y-1)+(y-1)=6-1
=> (y-1)(x+1)=5
Vì x, y là số nguyên dương nên x+1 và y-1 là ước dương của 5
Ta có bảng sau
x+1 | 1 | 5 |
x | 0 | 4 |
y-1 | 5 | 1 |
y | 6 | 2 |
Mà x, y là số nguyên dương nên
(x;y)=(4;2)
\(\hept{\begin{cases}x+y=4\\\left|x+1\right|+\left|y-2\right|=3\end{cases}}\)
Vì \(\left|x+1\right|\ge0;\left|y-2\right|\ge0\)
=>\(\left|x+1\right|+\left|y-2\right|\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+1+y-2=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\x+y=4\end{cases}}\)
Vậy x=4-y ; y=4-x
áp dụng BĐT giá trị tuyệt đối ta có:
\(\left|x+1\right|+\left|y-2\right|\ge\left|x+y+1-2\right|=3\)
dấu ''='' xảy ra khi và chỉ khi \(\left(x+1\right)\left(y-2\right)\ge0\)
\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}}\\\hept{\begin{cases}x+1< 0\\y-2< 0\end{cases}}\end{cases}}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x>0\\y>1\end{cases}}\\\hept{\begin{cases}x< -1\\y< 2\end{cases}}\left(loai\right)\end{cases}}\)từ chỗ đó tự làm được rồi chứ? xét 2 trường hợp 2 thừa số cùng âm hoặc cùng dương
Xy=2(x+y)
<=> (xy-2x)-(2y-4)=4
<=>x(y-2)-2(y-2)=4
<=>(X-2)(y-2)=4=1.4=2.2
Có x,y là số nguyên dương nên x-2,y-2 là số nguyên dương lớn hơn hoặc bằng-2 nên ta có
Th1: x-2=1,y-2=4
=> X=3,y=6.
Th2: x-2=4,y-2=1
=> X=6,y=3.
Th3: x-2=y-2=2
=> X=y=4.