Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1-y^3\right)=0\)
đến đây bạn thử xài phương pháp kẹp ..bla bla
Câu 1)
Thử \(x=1,2,3,4,5\) ta thấy chỉ \(x=1\) thỏa mãn \(y=1\)
Với \(x\geq 6\)
Để ý rằng \(1!+2!+3!+...+x!=3+3!+4!+...+x!\) luôn chia hết cho $3$. Do đó \(y^3\vdots 3\rightarrow y\vdots 3\rightarrow y^3\vdots 27\)
Với \(x\geq 6\) thì \(x!\) luôn chia hết cho $27$. Do đó để \(y^3\vdots 27\) thì \(1!+2!+...+5!\) cũng phải chia hết cho $27$ hay $153$ chia hết cho $27$. Điều này vô lý.
Do đó phương trình chỉ có bộ nghiệm \((x,y)=(1,1)\) thỏa mãn.
Bài 2)
Ta thấy \(3(x^2+y^2+xy)=x+8y\geq 0\) nên chắc chắn tồn tại ít nhất một số nguyên không âm.
TH1: \(x\geq 0\)
\(\text{PT}\Leftrightarrow 3y^2+y(3x-8)+3x^2-x=0\)
Để PT có nghiệm thì \(\Delta=(3x-8)^2-12(3x^2-x)\geq 0\)
\(\Leftrightarrow -27x^2-36x+64\geq 0\)
Giải HPT trên ta suy ra \(x\leq 1\). Do đó \(x=0\) hoặc $1$
Nếu \(x=0\Rightarrow y=0\)
Nếu \(x=1\rightarrow y=1\)
TH2: \(x<0\) thì \(y> 0\)
\(\text{PT}\Leftrightarrow 3x^2+x(3y-1)+3y^2-8y=0\)
Để PT có nghiệm thì \(\Delta =(3y-1)^2-12(3y^2-8y)\geq 0\)
\(\Leftrightarrow -27y^2+90y+1\geq 0\rightarrow y\leq 3\rightarrow y=1,2,3\)
Nếu \(y=1\rightarrow x=1\)
Nếu \(y=2,3\) không có $x$ thỏa mãn.
Vậy \((x,y)=(0,0),(1,1)\)
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
Với có ít nhất x,y = 1 thì VT > VP
Với x > 1, y > 1 thì
\(\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{y^2}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}< 1\)
Hay VT < 1
Vậy PT không có nghiệm nguyên dương
a) ĐKXĐ: \(x;y>0\)
Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
\(\Rightarrow\frac{4y}{4xy}+\frac{4x}{4xy}=\frac{xy}{4xy}\)
\(\Rightarrow4x+4y-xy=0\)
\(\Rightarrow x\left(4-y\right)=-4y\)
\(\Rightarrow x=\frac{-4y}{4-y}=\frac{-4\left(y-4\right)-16}{-\left(y-4\right)}\)
\(\Rightarrow x=4-\frac{16}{4-y}\)
Để x nguyên dương =>\(\hept{\begin{cases}\frac{16}{4-y}< 0\\\left(4-y\right)\inƯ\left(16\right)\end{cases}}\)
\(\Rightarrow4-y\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)
Tìm nốt y và thay vào tìm ra x
a/ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
Không mất tính tổng quát giả sử: \(x\ge y\)
\(\frac{1}{4}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)
\(\Leftrightarrow0< y\le8\)
\(\Rightarrow y=\left\{1;2;3;4;5;6;7;8\right\}\)làm nốt