Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương
=> ĐPCM
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương
=> ĐPCM
p=2 thì p^4+2 là hợp số
p=3 =>p^4+2=83 là số nguyên tố
với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số
vậy p=3
giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương
Đặt 2n + 2003 = k2 (1) và 3n + 2005 = m2 (2) (k, m \(\in\) N)
trừ theo từng vế của (1), (2) ta có:
n + 2 = m2 - k2
khử n từ (1) và (2) => 3k2 - 2m2 = 1999 (3)
từ (1) => k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1) 2 - 2m2 = 1999
<=> 2m2 = 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2 (4)
vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) => m2 chia 4 dư 2, vô lý
vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chính phương
=> ĐPCM