\(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8=4\left(\sqrt{x-1}+\sqrt{y...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

ĐKXĐ: \(x\ge1;y\ge1\)

Ta có: \(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)

\(\Leftrightarrow\frac{x^2-4}{x}+\frac{y^2-4}{y}=4\left[\left(\sqrt{x-1}-1\right)+\left(\sqrt{y-1}+1\right)\right]\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x+2\right)}{x}+\frac{\left(y-2\right)\left(y+2\right)}{y}=4\left(\frac{x-1-1}{\sqrt{x-1}+1}+\frac{y-1-1}{\sqrt{y-1}+1}\right)\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{x}-\frac{4}{\sqrt{x-1}+1}\right)+\left(y-2\right)\left(\frac{y+2}{y}-\frac{4}{\sqrt{y-1}+1}\right)=0\)

\(\Leftrightarrow\left(x-2\right)\frac{x\sqrt{x-1}+2\sqrt{x-1}+2+x-4x}{x\left(\sqrt{x-1}+1\right)}+\left(y-2\right)\frac{y\sqrt{y-1}+2\sqrt{y-1}+y-4y}{y\left(\sqrt{y-1}+1\right)}=0\)

\(\Leftrightarrow\left(x-2\right)\frac{\left( x-1\right)\sqrt{x-1}+3\sqrt{x-1}-3\left(x-1\right)-1}{x\left(\sqrt{x-1}+1\right)}\)

      \(+\left(y-2\right)\frac{\left(y-1\right)\sqrt{y-1}+3\sqrt{y-1}-3\left(y-1\right)-1}{y\left(\sqrt{y-1}+1\right)}=0\)

\(\Leftrightarrow\left(x-2\right)\frac{\left(\sqrt{x-1}-1\right)^3}{x\left(\sqrt{x-1}+1\right)}+\left(y-2\right)\frac{\left(\sqrt{y-1}-1\right)^3}{y\left(\sqrt{y-1}+1\right)}=0\)

\(\Leftrightarrow\left(x-2\right)\frac{\left(\sqrt{x-1}-1\right)^3\left(\sqrt{x-1}+1\right)^3}{x\left(\sqrt{x-1}+1\right)^4}+\left(y-2\right)\frac{\left(\sqrt{y-1}-1\right)^3\left(\sqrt{y-1}+1\right)^3}{y\left(\sqrt{y-1}+1\right)^4}=0\)

\(\Leftrightarrow\frac{\left(x-2\right)^4}{x\left(\sqrt{x-1}+1\right)^4}+\frac{\left(y-2\right)^4}{y\left(\sqrt{y-1}+1\right)^4}=0\)

Vì \(x\ge1;y\ge1\Rightarrow\frac{\left(x-2\right)^4}{x\left(\sqrt{x-1}+1\right)^4}\ge0;\frac{\left(y-2\right)^4}{y\left(\sqrt{y-1}+1\right)^4}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^4}{x\left(\sqrt{x-1}+1\right)^4}+\frac{\left(y-2\right)^4}{y\left(\sqrt{y-1}+1\right)^4}\ge0\)

Do đó dấu ''='' xảy ra khi \(\frac{\left(x-2\right)^4}{x\left(\sqrt{x-1}+1\right)^4}=\frac{\left(y-2\right)^4}{y\left(\sqrt{y-1}+1\right)^4}=0\Leftrightarrow x-2=y-2=0\Leftrightarrow x=y=2\)

Vậy \(x=y=2\).

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

8 tháng 6 2018

Hì , giải đc rùi nha.

Vì \(x,y\in R\)

\(\Rightarrow\left(x+2\right).\left(y+2\right)=\frac{25}{4}\)

Min \(P=\sqrt{1+x^4}+\sqrt{1+y^4}\)

- Dự đoán \(x=y=\frac{1}{2}\)

- Sử dụng BĐT : \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)    ( Với a,b > 0 )

=>  \(1+x^4=16.\frac{1}{16}+a^4=16.\left(\frac{1}{4}\right)^2+a^2\ge\frac{[16.\frac{1}{4}+a^2]^2}{17}\)

\(=\frac{(a^2+4)^2}{17}\)

=> \(1+y^4\ge\frac{\left(y^2+4\right)^2}{17}\)

=> \(P\ge\frac{x^2+y^2+8}{\sqrt{17}}\)

\(\Leftrightarrow P\sqrt{17}=\frac{1}{5}\left(x^2+y^2\right)+\frac{4}{5}\left(x^2+\frac{1}{4}+y^2+\frac{1}{4}\right)+8-\frac{2}{5}\)

\(\ge\frac{2xy}{5}+\frac{4}{5}\left(x+y\right)+8-\frac{2}{5}=\frac{2}{5}[xy+2\left(x+y\right)]+8-\frac{2}{5}\)

Theo giả thiết \(\left(x+2\right)\left(y+2\right)=\frac{25}{4}\)

\(\Leftrightarrow xy+2\left(x+y\right)=\frac{9}{4}\)

\(\Rightarrow P\sqrt{17}\ge\frac{2}{5}.\frac{9}{4}+8-\frac{2}{5}=\frac{17}{2}\)

\(\Leftrightarrow P\ge\frac{\sqrt{17}}{2}\)

Điểm rơi \(x=y=\frac{1}{2}\)

13 tháng 9 2018

ĐKXĐ: \(x\ge1\) 

Ta có: \(\frac{x^2-4}{x}+4+\frac{y^2-4}{y}+4=4\left(\sqrt{x-1}+\sqrt{y-1}\right)\)  

Lại có: \(\frac{x^2-4}{x}+4=x+\frac{4x-4}{x}\ge4\sqrt{x-1}\) 

Tương tự: \(\frac{y^2-4}{y}+4\ge4\sqrt{y-1}\) 

Cộng từng vế: \(\frac{x^2-4}{x}+\frac{y^2-4}{y}+8\ge4\left(\sqrt{x-1}+\sqrt{y-1}\right)\) 

Dấu "=" xảy ra khi: x=y=2 

Vậy (x;y)=(2'2) 

\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

ÁP DỤNG BĐT COSI
\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\ge3=>x+y\ge2\)

\(P\ge\frac{\left(x+y\right)^2}{x+y}=2\left(cosi\right)\) vậy min P=2 <=> x=y=1

12 tháng 5 2021

                      Bài làm :

Ta có :

\(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{y}+\sqrt{x}+1\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT cosi cho các số không âm ; ta được :

\(3\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\)

\(\Rightarrow x+y\ge2\)

Ta có :

\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)

\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi x=y=1

Vậy MinP = 2 <=> x=y=1

22 tháng 5 2019

Ta có \(\left(x-y\right)^2\ge0\forall x,y\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}..\)

Theo giả thiết \(x^2+y^2=\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-1\right)\)

\(\Rightarrow\left(x+y\right)\left(\sqrt{x}+\sqrt{y}-1\right)\ge\frac{\left(x+y\right)^2}{2}\)

Mà x,y>1/4\(\Rightarrow\sqrt{x}+\sqrt{y}-1\ge\frac{x+y}{2}\)

                \(\Leftrightarrow x+y\le2\sqrt{x}+2\sqrt{y}-2\)

               \(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)\le0\)

              \(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2\le0\)

Mà \(\hept{\begin{cases}\left(\sqrt{x}-1\right)^2\ge0\\\left(\sqrt{y}-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=0\\\left(\sqrt{y}-1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y}=1\end{cases}\Leftrightarrow}x=y=1\left(TMĐK\right).\)

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)5) Cho x, y > 1....
Đọc tiếp

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)

2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.

3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)

4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)

5) Cho x, y > 1. Tìm GTNN của \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

6) Cho x, y, z > 0 thỏa mãn: \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)

7) Cho a, b, c > 0. CMR:\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

8) Cho x>y>0. và \(x^5+y^5=x-y\). CMR: \(x^4+y^4<1\)

9) Cho \(1\le a,b,c\le2\). CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)

10) Cho \(x,y,z\ge0\)CMR: \(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\le\sqrt[3]{\frac{x+y}{2}}+\sqrt[3]{\frac{y+z}{2}}+\sqrt[3]{\frac{z+x}{2}}\)

11) Cho \(x,y\ge0\)thỏa mãn \(x^2+y^2=1\)CMR: \(\frac{1}{\sqrt{2}}\le x^3+y^3\le1\)

12) Cho a,b,c > 0 và a + b + c = 12. CM: \(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le3\sqrt{17}\)

13) Cho x,y,z < 0 thỏa mãn \(x+y+z\le\frac{3}{2}\). CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge3\sqrt{17}\)

14) Cho a,b > 0. CMR: \(\left(\sqrt[6]{a}+\sqrt[6]{b}\right)\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\le4\left(a+b\right)\)

15) Với a, b, c > 0. CMR: \(\frac{a^8+b^8+c^8}{a^3.b^3.c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

16) Cho x, y, z > 0 và \(x^3+y^3+z^3=1\)CMR: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)

3
20 tháng 1 2016

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

20 tháng 1 2016

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!