\(\in\)Z

 1) (x-1).(x+y)=-3

 2) x+y=xy

bạn nào giải được thì gi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

2)  x+y=xy

0=xy-x-y

0=x.(y-1).(x-1)

1=(y-1).(x-1)

hay (y-1)(x-1)=1

\(\Rightarrow\)(y-1)(x-1)=1.1=-1.-1

th1 x-1=1                y-1=1

     x=1+1                y=1+1

     x=2                   y=2         thỏa mãn

th2  x-1=-1             y-1=-1

       x=-1+1            y=-1+1

        x=0                y=0       thỏa mãn

vây[ x=2 ,y=2     ;   [x=0,y=0

22 tháng 7 2016

Áp dngj tính chất dãy các tỉ số bằng nhau. ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x+3y-z}{2.2+3.3-4}=\frac{50}{9}\)\(\frac{50}{9}\)

\(\frac{x-1}{2}=\frac{50}{9}\Rightarrow x-1=\frac{50}{9}.2=\frac{100}{9}\)

                                       \(x=\frac{100}{9}+1=\frac{109}{9}\)

\(\frac{y-2}{3}=\frac{50}{9}\Rightarrow y-2=\frac{50}{9}3=\frac{50}{3}\)

                                        \(y=\frac{50}{3}+2=\frac{56}{3}\)

\(\frac{z-3}{4}=\frac{50}{9}\Rightarrow z-3=\frac{50}{9}.4=\frac{200}{9}\)

                                        \(z=\frac{200}{9}+3=\frac{227}{9}\)      

Chúc bạn học tốt

\(\)

22 tháng 7 2016

cái đoạn có hai phân số \(\frac{50}{9}\)bạn bớt đi một cái nha cái đó mik ghi nhầm

2 tháng 10 2016

Ta có :

\(\frac{x}{3}=\frac{y}{2};\frac{z}{5}=\frac{y}{4}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

\(\Rightarrow\begin{cases}x=12\\y=8\\z=10\end{cases}\)

2 tháng 10 2016

\(\frac{x}{3}=\frac{y}{2};\frac{z}{5}=\frac{y}{4}\)

\(\Leftrightarrow\)\(\frac{x}{6}=\frac{y}{4};\frac{z}{5}=\frac{y}{4}\)

\(\Rightarrow\)\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

=>\(\begin{cases}x=12\\y=8\\z=10\end{cases}\)

4 tháng 3 2020

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)

\(=>\frac{y-x}{xy}=\frac{1}{xy}\)

\(=>xy^2-x^2y=xy\)

\(=>xy^2-x^2y-xy=0\)

\(=>x.\left(y^2-xy-y\right)=0\)

\(=>\orbr{\begin{cases}x=0\\y^2-xy-y=0\end{cases}}\)

Ta thấy \(y^2-xy-y=0\)

\(=>y.\left(y-x-y\right)=0\)

\(=>\orbr{\begin{cases}y=0\left(2\right)\\y-y=0\end{cases}}\)

Từ 1 và 2 => x = y = 0

4 tháng 3 2020

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)

\(\Rightarrow\frac{y-x}{xy}=\frac{1}{xy}\)

\(\Rightarrow y-x=1\)

Vậy x,y có dạng \(\hept{\begin{cases}x=y-1\\y=x+1\end{cases}}\)với \(y\ne1;x\ne-1;x\ne0;y\ne0\)

27 tháng 6 2018

1)  1/x-1/y

=y/xy-x/xy

=y-x/xy

= - (x-y)/xy

= -1 (vì x-y=xy)

2)

(x- 1/2)*(y+1/3)*(z-2)=0

=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0

th1 :x-1/2=0 => x=1/2

x+2=y+3=z+4

mà x=1/2 => y= -1/2 ; z=-3/2

th2: y+1/3=0

th3 : z-2=0

(tự làm nha)

27 tháng 6 2018

1)  Với x,y khác 0, Ta có

\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)

Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)

2) Ta có:

\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)

Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)

Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)

Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)

Vậy......

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{x+y+z}{y+z-5+x+z+3+x+y+2}=\frac{x+y+z}{2x+2y+2z}=\frac12\)

=>\(\begin{cases}y+z-5=2x\\ x+z+3=2y\\ x+y+2=2z\end{cases}\Rightarrow\begin{cases}y+z=2x+5\\ y+z=2y-3\\ x+y=2z-2\end{cases}\)

\(\frac{x}{y+z-5}=\frac12\left(x+y+z\right)\)

=>\(\frac12\left(x+y+z\right)=\frac12\)

=>x+y+z=1

*Ta có: x+y+z=1

=>z+2z-2=1

=>3z-2=1

=>3z=3

=>z=1

*Ta có: x+y+z=1

=>y+2y-3=1

=>3y=4

=>\(y=\frac43\)

*Ta có: x+y+z=1

=>x+2x+5=1

=>3x+5=1

=>3x=-4

=>\(x=-\frac43\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{y+z-5}=\frac{y}{x+z+3}=\frac{z}{x+y+2}=\frac{x+y+z}{y+z-5+x+z+3+x+y+2}=\frac{x+y+z}{2x+2y+2z}=\frac12\)

=>\(\begin{cases}y+z-5=2x\\ x+z+3=2y\\ x+y+2=2z\end{cases}\Rightarrow\begin{cases}y+z=2x+5\\ y+z=2y-3\\ x+y=2z-2\end{cases}\)

\(\frac{x}{y+z-5}=\frac12\left(x+y+z\right)\)

=>\(\frac12\left(x+y+z\right)=\frac12\)

=>x+y+z=1

*Ta có: x+y+z=1

=>z+2z-2=1

=>3z-2=1

=>3z=3

=>z=1

*Ta có: x+y+z=1

=>y+2y-3=1

=>3y=4

=>\(y=\frac43\)

*Ta có: x+y+z=1

=>x+2x+5=1

=>3x+5=1

=>3x=-4

=>\(x=-\frac43\)