Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
a) Ta có = 1 = 1.1 = (-1) . (-1)
Lập bảng xét 2 trường hợp ta có :
\(x+3\) | \(1\) | \(-1\) |
\(y+2\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(-4\) |
\(y\) | \(-1\) | \(-3\) |
Vậy các cặp (x;y) thỏa mãn là : (- 2 ; - 1) ; (- 4 ; - 3)
b)
\(a;\left(x+3\right)\left(y+2\right)=1\)
=> Có 2 TH:
*TH1: x+3 = 1 và y+2 =1
=> x = -2 y = -1
* TH2: x +3 = -1 và y + 2 = -1
=> x = -4 y = -3
>> Với toán lớp 6 chắc đề bài là tìm x,y nhỉ ? . Lần sau bạn nhớ viết tên đề bài nhé ;) <<
a) \((x−3).(y−2)=7\)
\(\Rightarrow\left(x\text{−}3\right)\inƯ\left(7\right)\)
\(\Rightarrow x\text{−}3\in\left\{1;\text{−}1;7;\text{−}7\right\}\)
Ta có bảng sau :
\(x\text{−}3\) | \(1\) | \(−1\) | \(7\) | \(−7\) |
\(x\) | \(4\) | \(2 \) | \(10\) | \(\text{−}4\) |
\(y−2\) | 7 | −7 | 1 | −1 |
\(y\) | 9 | −5 | 3 | 1 |
Vậy .....
b) \((x−1).(y−1)=2\)
\(\Rightarrow\left(x\text{−}1\right)\inƯ\left(2\right)\)
\(\Rightarrow x\text{−}1\in\left\{1;\text{−}1;2;\text{−}2\right\}\)
Ta có bảng sau :
x−1 | 1 | −1 | 2 | −2 |
x | 2 | 0 | 3 | −1 |
y−1 | 2 | −2 | 1 | −1 |
y | 3 | −1 | 2 | 0 |
Vậy ......
c) \((x−1).(y−2) = 2\)
\(\Rightarrow x\text{−}1\inƯ\left(2\right)\)
\(\Rightarrow x\text{−}1\in\left\{1;\text{−}1;2;\text{−}2\right\}\)
Ta có bảng sau :
x−1 | 1 | −1 | 2 | −2 |
x | 2 | 0 | 3 | −1 |
y−2 | 2 | −2 | 1 | −1 |
y | 4 | 0 | 3 | 1 |
Vậy ...
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)