Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy $25-y^2=8(x-2017)^2\geq 0$
$\Rightarrow 25\geq y^2$
$\Rightarrow 5\geq y$ (1)
Mặt khác: $25-y^2=8(x-2017)^2$ là số chẵn, do đó $y^2$ lẻ, kéo theo $y$ lẻ (2)
Từ $(1);(2)$ suy ra $y$ có thể nhận giá trị $y=1; 3;5$
Với $y=1$ thì $8(x-2017)^2=25-1^2=24$
$\Rightarrow (x-2017)^2=3$ (không thỏa mãn $x\in\mathbb{N}$)
Với $y=3$ thì $8(x-2017)^2=25-3^2=16$
$\Rightarrow (x-2017)^2=2$ (không thỏa mãn $x\in\mathbb{N}$)
Với $y=5$ thì $8(x-2017)^2=25-y^2=0$
$\Rightarrow (x-2017)^2=0\Rightarrow x=2017$
Vậy $(x,y)=(2017, 5)$
Do 25 - y^2 lớn hơn hoăc bằng 0 nên y bé hơn hoăc bằng 5
- Với y =5 suy ra 8(x - 2017)^2 = 0 suy ra x- 2017=0 nên x =2017
- Với y =4 suy ra 8(x-2017)^2 =9 ( loại )
-Với y =3 suy ra 8(x-2017)^2 =16 suy ra (x-2017)^2 =2 (loại)
-Với y=2 suy ra 8(x-2017)^2 =21 ( loại)
-Với y=1 suy ra 8(x-2017)^2 =24 suy ra (x -2017) ^2 =3 ( loại)
-Với y=0 suy ra 8(x-2017)^2 =25. (loại)
Vậy (x;y) = (2017;5)
tận cùng của cá c số chính phương gồm 1,4,5,6,9
nếu y = 0 thì x = 13
nếu y khác 0 thì 10y + 168 có tận cùng là 8 suy ra không tồn tại x,y thỏa mãn
2x là số chẵn
624 là số chẵn
5y là số lẻ
Mà số chẵn cộng số chẵn bằng số chẵn
\(\Rightarrow2^x+624\ne5^y\)
\(\Rightarrow\)Không tìm được x,y thích hợp
số cặp x,y là :
N :2 = ??
đ/s:.......
số cặp x,y,z là :
N* :3=?
với y=0 thì\(5^y\)=1
mà \(2^x\)+624\(\ge\)0
\(\Rightarrow\)y\(\ne\)0
\(\Rightarrow\)y\(\ge\)1
với y\(\ge\)1 thì \(5^y=...5\)
để \(2^x+624=...5\)
thì \(2^x\)=...1
\(\Rightarrow x=0\)
\(\Rightarrow\)\(2^x+624=2^0+624=1+624=625\)=\(5^4\)
\(\Rightarrow\)y=4
Vậy x=0 và y=4
=>5y-2x=624
5y>624
=>2x<624
=>x<10
Ta có bảng sau
x | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
2x | 512 | 256 | 128 | 64 | 32 | 16 | 8 | 4 | 2 |
5y | 1136 | 880 | 752 | 688 | 656 | 640 | 632 | 628 | 626 |
y | ??? | ??? | ??? | ??? | ??? | ??? | ??? | ??? | ??? |
Ko tìm được x;y
k minh nha