Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x/3=y/4 b, 2x=5y
=> 2x/6=y/4=2x-4/6-4=2/2=1 => x/5=y/2 => 3x/15=y/2=3x-y/15-2=22/13
+, x/3=1 => x=3 +,2x=22/13 => x=11/13
+, y/4=1 => y=4 +,5y=22/13 => y=22/65
Vậy .... Vậy ...........
c, x/y=3/5 d, x/2=y/5
=> x/3=y/5 => 2x/4=y/5
=>3x/9=2y/10 => 2x+y/4+5=18/9=2
=> 3x+2y/9+10=38/19=2 +,x/2=2 => x=4
+,x/3=2 => x=6 +,y/5=2 => y=10
Vậy ........... Vậy ............
+,y/5=2 => y=10
1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)
=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)
=> \(15-x+x-12-5+x=7\)
=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)
=> \(\left(15-12-5\right)-7=3x\)
=> \(3x=-2-7\)
=> \(3x=-9\)
=> \(x=\frac{-9}{3}=-3\)
b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)
=> \(x-57-42-23-x=13-47+25-32+x\)
=> \(x-x+x=13-47+25-32+57+42+23\)
=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)
=> \(x=36-104+82-74\)
=> \(x=-60\)
d/ \(\left(x-3\right)\left(2y+1\right)=7\)
Vì 7 là số nguyên tố nên ta có 2 trường hợp:
TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).
TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).
Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).
d) \(x.\left(y+2\right)-y=15\)
\(\Rightarrow x.\left(y+2\right)=15+y\)
\(\Rightarrow x=\frac{y+15}{y+2}=\frac{y+2+13}{y+2}=1+\frac{13}{y+2}\)
y + 2 là ước nguyên của 13
\(y+2=1\Rightarrow y=-1\Rightarrow x=14\)
\(y+2=-1\Rightarrow y=-3\Rightarrow x=-12\)
\(y+2=13\Rightarrow y=11\Rightarrow x=2\)
\(y+2=-13\Rightarrow y=-15\Rightarrow x=0\)
Ai thấy đúng thì ủng hộ, mink chỉ làm được vậy thuu
Ta có 2x + 1 . 3y = 10x
=> 2x.3y.2 = 10x
=> 3y.2 = 5x
=> 3y.2 = (...5)
=> 3y = (...5) : 2
Vì 5y tận cùng là 5
=> 5y không chia hết cho 2
=> Không tồn tại x;y \(\inℕ\)thỏa mãn
=> \(x;y\in\varnothing\)
b) 10x : 5y = 20y
=> 10x = 4y
=> x = y = 0
c) (2x - 15)5 = (2x - 15)3
(2x - 15)5 - (2x - 15)3 = 0
=> (2x - 15)3[(2x - 15)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-15=0\\2x-15=\pm1\end{cases}}\Rightarrow2x-15\in\left\{0;1;-1\right\}\)
=> \(x\in\left\{7,5;8;7\right\}\)
Vì x là số tự nhiên => \(x\in\left\{7;8\right\}\)