\(\in\)2,biết 

a/ x.(y-1)=3

b/(2x+5).(3-5y)= -12

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

a, x/3=y/4                                                     b, 2x=5y

=> 2x/6=y/4=2x-4/6-4=2/2=1                     => x/5=y/2 => 3x/15=y/2=3x-y/15-2=22/13

+, x/3=1 => x=3                                  +,2x=22/13 => x=11/13

+, y/4=1 => y=4                                  +,5y=22/13 => y=22/65

Vậy ....                                   Vậy ...........

c, x/y=3/5                                                      d,     x/2=y/5

=> x/3=y/5                                               => 2x/4=y/5 

=>3x/9=2y/10                                            => 2x+y/4+5=18/9=2

 => 3x+2y/9+10=38/19=2                    +,x/2=2 => x=4

+,x/3=2 => x=6                                  +,y/5=2 => y=10

Vậy ...........                                        Vậy ............ 

+,y/5=2 => y=10

16 tháng 7 2017

1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)

=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)

=> \(15-x+x-12-5+x=7\)

=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)

=> \(\left(15-12-5\right)-7=3x\)

=> \(3x=-2-7\)

=> \(3x=-9\)

=> \(x=\frac{-9}{3}=-3\)

b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)

=> \(x-57-42-23-x=13-47+25-32+x\)

=> \(x-x+x=13-47+25-32+57+42+23\)

=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)

=> \(x=36-104+82-74\)

=> \(x=-60\)

d/ \(\left(x-3\right)\left(2y+1\right)=7\)

Vì 7 là số nguyên tố nên ta có 2 trường hợp:

TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).

TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).

Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).

2 tháng 5 2017

d) \(x.\left(y+2\right)-y=15\)

\(\Rightarrow x.\left(y+2\right)=15+y\)

\(\Rightarrow x=\frac{y+15}{y+2}=\frac{y+2+13}{y+2}=1+\frac{13}{y+2}\)

y + 2 là ước nguyên của 13

\(y+2=1\Rightarrow y=-1\Rightarrow x=14\)

\(y+2=-1\Rightarrow y=-3\Rightarrow x=-12\)

\(y+2=13\Rightarrow y=11\Rightarrow x=2\)

\(y+2=-13\Rightarrow y=-15\Rightarrow x=0\)

Ai thấy đúng thì ủng hộ, mink chỉ làm được vậy thuu

18 tháng 8 2020

Ta có 2x + 1 . 3y = 10x

=> 2x.3y.2 = 10x

=> 3y.2 = 5x

=> 3y.2 = (...5)

=> 3y = (...5) : 2

Vì 5y tận cùng là 5

=> 5y không chia hết cho 2 

=> Không tồn tại x;y \(\inℕ\)thỏa mãn

=> \(x;y\in\varnothing\)

b) 10x : 5y = 20y

=> 10x = 4y

=> x = y = 0

c) (2x - 15)5 = (2x - 15)3

(2x - 15)5 - (2x - 15)3 = 0

=> (2x - 15)3[(2x - 15)2 - 1] = 0

=> \(\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-15=0\\2x-15=\pm1\end{cases}}\Rightarrow2x-15\in\left\{0;1;-1\right\}\)

=> \(x\in\left\{7,5;8;7\right\}\)

Vì x là số tự nhiên => \(x\in\left\{7;8\right\}\)

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)