Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x^3+3x^2y+3xy^2+y^3\right)+z^3-3x^2y-3xy^2-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
Vì \(x+y+z\ne0\) nên \(x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]=0\)
\(\Rightarrow x=y=z\) thay vào P ta được :
\(P=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)
a/ \(\frac{x}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)
\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)
b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)
Nhanh vậy ta:
chơi khác kiểu không trùng ai hết.
câu 1
\(P=\frac{1}{x^2}+\frac{1}{y^2}=\frac{y^2+x^2}{\left(xy\right)^2}=\frac{20}{\left(xy\right)^2}\)(1)
Ta lại có:
\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow xy\le\frac{20}{2}=10\)(2) Đẳng thức khi x=y
Từ (1) và (2) \(\Rightarrow P_{min}=\frac{20}{100}=\frac{1}{5}\) Khi x=y=\(\sqrt{10}\)
câu 2: Không cần đk (x+y+z)=1
\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) (1) =>Dk \(\hept{\begin{cases}x+z\ne0\\y+z\ne0\\x+y\ne0\end{cases}\Rightarrow\left(x+y+z\right)\ne0}\)
Nhân hai vế (1) với (x+y+z khác 0)
\(\Leftrightarrow\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=1.\left(x+y+z\right)\)
\(\Leftrightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=\left(x+y+z\right)\)
\(\Rightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)=0\)
Câu 1:
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có:
\(P=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{4}{20}=\frac{1}{5}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x,y>0\\x^2+y^2=20\\x=y\end{cases}}\Rightarrow x=y=\sqrt{10}\)
Vậy MinP=\(\frac{1}{5}\Leftrightarrow x=y=\sqrt{10}\)
Câu 2:
Từ \(x+y+z=1\Rightarrow\hept{\begin{cases}x=1-\left(y+z\right)\\y=1-\left(x+z\right)\\z=1-\left(x+y\right)\end{cases}}\).Thay vào ta có
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=\frac{x\left[1-\left(y+z\right)\right]}{y+z}+\frac{y\left[1-\left(x+z\right)\right]}{x+z}+\frac{z\left[1-\left(x+y\right)\right]}{x+y}\)
\(=\frac{x-x\left(y+z\right)}{y+z}+\frac{y-y\left(x+z\right)}{x+z}+\frac{z-z\left(x+y\right)}{x+y}\)
\(=\frac{x}{y+z}-\frac{x\left(y+z\right)}{y+z}+\frac{y}{x+z}-\frac{y\left(x+z\right)}{x+z}+\frac{z}{x+y}-\frac{z\left(x+y\right)}{x+y}\)
\(=\frac{x}{y+z}-x+\frac{y}{x+z}-y+\frac{z}{x+y}-z\)
\(=\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)-\left(x+y+z\right)=1-1=0\)
Đặt \(\left\{{}\begin{matrix}xy=a\\yz=b\\zx=c\end{matrix}\right.\)
Giả thiết \(\Leftrightarrow a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+c^3-3abc-3a^2b-3ab^2=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)
+) TH1: \(a+b+c=0\Leftrightarrow xy+yz+zx=0\)
Biến đổi linh tinh P chắc là ra :D
+) TH2: \(a=b=c\Leftrightarrow xy=yz=zx\Leftrightarrow x=y=z\)
\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}=\frac{2y}{y}\cdot\frac{2z}{z}\cdot\frac{2x}{x}=2\cdot2\cdot2=8\)
Vậy....
TH1: \(xy+yz+zx=0\)
\(\Leftrightarrow z\left(x+y\right)=-xy\)
\(\Leftrightarrow x+y=\frac{-xy}{z}\)
Vì vai trò của x, y, z là như nhau nên ta cũng có :
\(\left\{{}\begin{matrix}y+z=\frac{-yz}{x}\\z+x=\frac{-zx}{y}\end{matrix}\right.\)
Ta có \(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(P=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}\)
\(P=\frac{\frac{-xy}{z}\cdot\frac{-yz}{x}\cdot\frac{-zx}{y}}{xyz}\)
\(P=\frac{\frac{-x^2y^2z^2}{xyz}}{xyz}\)
\(P=\frac{-xyz}{xyz}=-1\)
Vậy....
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{1}{3}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)
\(\Leftrightarrow3\left(x+y\right)=xy\)
\(\Leftrightarrow3x+3y-xy=0\)
\(\Leftrightarrow x\left(3-y\right)+3y=0\)
\(\Leftrightarrow x\left(3-y\right)+3y-9=9\)
\(\Leftrightarrow x\left(3-y\right)-3\left(3-y\right)=9\)
\(\Leftrightarrow\left(x-3\right)\left(3-y\right)=9\)
=>x-3 và 3-y thuộc Ư(9)={1;3;9} (với x,y thuộc Z+)
Xét \(\begin{cases}x-3=1\\3-y=9\end{cases}\)\(\Rightarrow\begin{cases}x=4\\y=-6\end{cases}\)(loại)
Xét \(\begin{cases}x-3=3\\3-y=3\end{cases}\)\(\Rightarrow\begin{cases}x=6\\y=0\end{cases}\)(thỏa mãn)
Xét \(\begin{cases}x-3=9\\3-y=1\end{cases}\)\(\Rightarrow\begin{cases}x=12\\y=2\end{cases}\)(thỏa mãn)
Vậy các cặp (x,y) thỏa mãn là (6;0),(12,2)
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
\(\Rightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{1}{3}\)
\(\Rightarrow\frac{y+x}{xy}=\frac{1}{3}\)
\(\Rightarrow3\left(y+x\right)=xy\)
Rồi tự xét ra ^^