K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2020

\(\hept{\begin{cases}x+4y=6\sqrt{2}\\x+y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=-3+6\sqrt{2}\\x+y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x+\left(-1+2\sqrt{2}\right)=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1+2\sqrt{2}\\x=4-2\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=4-2\sqrt{2}\\y=-1+2\sqrt{2}\end{cases}}\)

Vậy HPT có nghiệm.....

\(\hept{\begin{cases}2x+y=5\\4x+6y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\\4x+6y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4y=0\\2x+y=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=0\\2x=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=0\\x=\frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=0\end{cases}}\)

Vậy HPT có nghiệm.....

2 tháng 2 2020

\(\hept{\begin{cases}x+2y=\sqrt{3}\\3x+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+4y=2\sqrt{3}\\3x+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\3.\left(1-2\sqrt{3}\right)+4y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-2\sqrt{3}\\y=\frac{-1+3\sqrt{3}}{2}\end{cases}}\)

Vậy HPT có nghiệm.....

\(\hept{\begin{cases}4x-9y=9\\22x+6y=31\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}44x-99y=99\\44x+12y=62\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}111y=-37\\4x-9y=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\4x-9.\left(\frac{-1}{3}\right)=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{3}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{-1}{3}\end{cases}}\)

Vậy HPT có nghiệm.....

28 tháng 4 2019

bai nay chi luot chi gu la dc qua z

28 tháng 4 2019

\(\hept{\begin{cases}x^2y^2-2x+y^2=0\left(1\right)\\2x^2-4x+3=-y^3\left(2\right)\end{cases}}\)

(1)\(\Leftrightarrow y^2\left(x^2+1\right)=2x\Leftrightarrow y^2=\frac{2x}{x^2+1}\)

Dễ thấy \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow2x\le x^2+1\Leftrightarrow\frac{2x}{x^2+1}\le1\)

\(\Rightarrow y^2\le1\Leftrightarrow-1\le y\le1\)(*)

(2)\(\Leftrightarrow2x^2-4x+2=-y^3-1\)\(\Leftrightarrow2\left(x-1\right)^2=-\left(y^3+1\right)\)

Mà \(2\left(x-1\right)^2\ge0\Rightarrow-\left(y^3+1\right)\ge0\)

\(\Leftrightarrow y^3+1\le0\Leftrightarrow y^3\le-1^3\Leftrightarrow y\le-1\)(**)

TỪ (*) và (**) \(\Rightarrow y=-1\) Thế vào (2) tìm được \(x=1\)

Vậy hệ có nghiệm duy nhất (1;-1)

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~