\(\left(\frac{3x-5}{9}\right)^{2014}+\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

( x - 2 )2012  + | y2 - 9 |2014 = 0  ( 1 )

vì ( x - 2 )2012 \(\ge\)0 ; | y2 - 9 |2014 \(\ge\)0      ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy x = 2 ; y = 3

còn lại tương tự

3 tháng 12 2017

Vì (x -2 )2012> hoặc =0 mà |y2 -9 |2014 > hoặc =0 nên để (x -2 )2012 + | y2 -9 |2014 =0 thì (x-2)2012 =0 và |y2 -9| =0

=>( x-2)=0 và y2-9=0

=>x=0 và y2=9

=>x=o và y=3 hoặc x= -3

18 tháng 9 2016

1) \(\left(9^9\right)^{2013}\)= 1026936315936466644007655232277334158156103408524055441368417162984522655091086906314108445516502484646730803186280183953735060258580738890779016567783128742277443266030645053000370688213001912666003362130414573924427617357704809050499482091752946944217365290524293447277785875056747263299466460038193422474667528424271680418770747397115304929638956453828239332110052185072915834267291697848663307334639508752470930402611542381620336575749463842313193588247628614804122537752157307173145355712036732199577500474260456976474502238941276601372253245007736761993906930051900170289818510239277392738996048088854235632472636323753689820558697883030218432519322622343591607096103803493578687156569416803248303477626186380247107570572687865343338300100118924192603518275807054239857318826838307416910902040259036049621875924220127196379239471561826559434563423075800724469900400300040159052195977359572353303973703643001571087917913137076064709413307255417079499363284247140649746269536516691680327257452245440138266397448556568053001097875042519788926905739503327586366847865493444133449455506431848468934231630697152102459587693955546794340951359973974246571971095730740103946650501885793455461393041504593666429863927205865731260191652014957294105725354606028065809108585710828735023586052037624862615881255170223986612277140259867308693692913524330929799646164708688765601512109313349574509822781385464558749433184595170926935858749974088068616143705100144672164593160370193136604675657191559134608219409953517986494243514788971966486689395199320932818055296903344541638617207415815650906818484611000987765549841179613358592946528510547663264466169888514147018943628319934979815358306853694250579369170285224662060226941844533083450895413144426876575931247934341990474013932087924206429013839339619081485400687502321763335850155938686962990356280348259890705858083464218700873277406929113812270773100931724721446319950200734938259274420684561062207311929135379317795625970174331692616532968812290672192719632301088918105516980649956654688416491404227850833003606454955813322669703124707051088776330657942143367560755895491239632785346742400333521634988363706325830086758733003107032055269088858396206070942576145524447341617529555079020662989965232684156212812549436269738037891399615703721380901090915261705306504796587364430270191516149142247702882291499181275124401464836481565285225966356210150534392969830036474527726739334735542814296748215232174711227692064595037307803669170817046315776900108143303972394011595827736831894502369837041899011411462368103059877154789325324218339673368994146645015446471646714044170017089013107039431723566924973616793942222553191471205340039459102517004652793394193180872771770081049022665745745801492519226280222379337791126765095526665708900958521211283690589438139701827069810355628457689462449174192472454823277707703931769511523402172088323346511339966064303882539230522459494582356765308832632744209535331162834962460212181389503850237088696407511771903988580976017142272712992447383945731576824359740331987063655005516090030376992271875220653120183170542438567583462347089812079841488460323755675849648342224979798891349597114494885781007080896214002744995783915850907230933522861281601415358680918097776532712162793713404996768434536910832959969822168089790423725364669610463828931705893795678670450265470501857833192504905238157437136407924482707690074600704467004460751493442877418540656968811357181297883496033956346452044527520385438779942609030326217555091398587968532301339527314058490612128489860041998799368618820443539109425221847139081891713039087218286851930899483989721898294944242901957324795291290538049075541991359845781927616941778628448234758137009317434798187748910014905940960363520220484339080730076833212071982879793665358440454469434838321254919208741817386778536122176850668886430875598694660895328200311197435920543048271551229348941074255188905794440996596273172913590736916479452088440747449846094215986199905169079998682043901493347123203691856739036583513230518566225891359066972171127103587649854469267685017308377781513871345173585295949758250554213972099633887299424620149370085422553180576977919929740533560073700690325720729082093104494502422759523112838712027606438422754640293436106826607258752572572701200278832907762014653136642892655305845698597681850307268402593458663789848395823450866281803118071552452077617109401349402101367672811015042391494471013423800348706308123842366833092501553905659790084088538093176919716972583354144568901310426642434019786996725862398237165792755405187234720936153283078807801977180417909881940041894864954027083459707902989105399082477860011074755831567742002921262180561813216003113025741566417269149294529269755930423136814550198894165317271092065044318125427494890824949593586767565200787439396106655092028278013360450558783644656940947679295287600004765992481889190429827022207642135788661174477435648180566286191330333295323147060741100629863095687029722409936853895283432691463126507353983593892497046958267783905130426170111927280910047070050612100937946498873103263031074976261957513993115802752721579872777080872360411360260782894504855073589667054506530591747900059485189087277248382614161056654649707928694996013355672002986520721307090648502637466261888739154517767512272941143864465965147818438271394054272035613676863628666879330126789382606298763582826669099347506539078324626973229584105863547757428142498322510987515363131810574081188857112711365848275064867382051891733551113839596911899765594904328468503931363859338150357817639813486073345263438062122011530183605498044471970431607359800791967264010218608285723467812123749036732142403008106602542464783775422435298585807448543516258845465655844111403161845529791780538289442909425354548851932392694303359705164700204358597043402141152819226709200628591863459700806259572405836139550184313961581046924609874157901030613827584947312562317464572222700841964911009267637169004385041130563743953571504906172159750428127399350300931402070479301670529170615856011832858722307113041690041755657728678726419372059691255470144663531274082779335381740160578026303644613212900225878103916223041133352804873266163657903158574192828632243175807540088502548453528803110596011739655137032459469927760677051481785815318999046215578888702463906792131094213645537357852611606076013276773613390990388173633245700515545076816133542599598499949723848446846040903867776433205190899458255921949520148434244684972358450429478617399109483668411833154341343331596817113688925531133966594356450437151847089918527052466610924085855975570724149296945214723797165852817441094282320203756276507525476812533694746988614602627000447075297716670810246470607294951837087981880185870081483970273663390845791653147404366837274335890164587108250142705517640988039479752905527665703615863346026282171391193190112534294544585726008204363693191833965757306207085939261792334572843940733961127799890504819910614969470093349277145503657154837433994483870782259224359663573131541668881840466987976168916438787978818848230967569497655841297878026184394003642764079687952562476576146449442282665665627062431983400658177836470304870687728154854192613653152535493360438487180031985143543617912832793367412349947726683917996081583384702918734566505578806128946841857562087241435004087070789542240773581921928005901690258672269092590124500796445719082697792225382784151790938676825306626865188529596442803922777148260497623892895270534600217592445771483895959368006353307304241803967957192744250039467817705371796676384795268591135125140223131933633348757546184329503534513723177842537591210082615190216661722192968680477180317993874327059375746383249204423388877854621585002142950138500998980754470880782997405789372694278455215744885287053078760429841030680604256082019513240058465876476686113482531622663644883596054171375493255831576420272830752431634417232232882465379393173662913872082870209808446797323357040155190328323992315789585266903266828863588330335547870366782441908444367043692439803818881157436020122216202518524682411877554723277000405601285026176606291268217957356053077981068457723039154415074902180316582650007989729437021464604582253864059586460048260679487724704675866586698851810229896553877362626216059041696538021938652043271314984392204765164687779233220067263693213225060451042319669294233260313335379542045376715328477015835543606860048626014264988155465791046017596596488729705124299932904937714100497822944619926932556076021781638353926980618924509567280552511774898178183380408535332274238263462857749564025886673346241689220239194135371213590607731864979855691221933163266128212992157311201100582332659440876199030841741026154166377915370598488067078371415319375427727871951800558420118475796978600403940948465456769302708717449307325121955867230292193107738235633827754864717358892601233377095074936732132284373204027933918066684558971240197355111463383881302485003552384368392525154670448582107380907112689572461895703657643559372285238675498922192204428732862650671502772426820495422208684425663259876566065182166188271090573539769385459220918977757051198100386641318298053260505549618871966912908666212193523708164550173741867042506350232610165673912771635902190474664590911859675736148212118522255524812604463775058875135451329172876439928813868904160614003825581937604612326177792821096132608244238560824137851366110812005463287141899355151442378684050172236810364678989505885190074214284284959005557252055717378597484460165885696223840619316331040542397531108669751210899626818870762213291033776300895989013816097525277221258955433345550132182061450410343607884073951739721319091655297604945196190262079363901299620303646225638620166689963605526844298501915881282126682238782636151617537506673786427348984008182232675423156980717768277374147919112069962326042326866062911778799566351427521992050027454909678046580762578435439410173495078163510520075641724912805...

13 tháng 6 2018

1)

a) Theo đề ta có:

(99)2013 = 99.2013= 918117 

Ta có:

9= 9 có chữ số tận cùng là 9

92 = 81 có chữ số tận cùng là 1

và 918117 = 92.9058. 9 = (92)9058 .9 ( mình giải thích thêm là mình nhân 9 để cùng cơ số và cộng các tử lại là 2.9058 + 1 = 18117)

Vì 92 có chữ số tận cùng là 1

Nên (92)9058 cũng có chữ số tận cùng là 1

\(\Rightarrow\)918117 = (...1) .9

\(\Rightarrow\)918117 = (...9)

Vậy chữ số tận cùng của (99)2013 là 9

b) Ta có:

20081 = 2008 có chữ số tận cùng là 8

20082 = (...4) có chữ số tận cùng là 4 (vì 8.8=64)

20083 = (...2) có chữ số tận cùng là 2 (vì 4.8=32)

20084 = (...6) có chữ số tận cùng là 6 (vì 2.8=16)

và 2008100 = 20084.25= (20084)25

Vì 20084 có chữ số tận cùng là 6

Nên (20084)25 cũng có chữ số tận cùng là 6

Vậy 2008100 có chữ số tận cùng là 6

22 tháng 7 2020

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có : 

\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)

Giá trị của A khi x = \(\sqrt{2}\)là 0

b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)

Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)

Giá trị của B khi x = 3 là 32

d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)

=> D = 8

e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)

Lại có x + y + z = 0

=> x + y = -z

=> x + z = - y 

=> y + z = - x

Khi đó E = \(\frac{-xyz}{xyz}=-1\)

\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)

Hệ số \(\frac{-125}{27}\)

Biến : a8b2x16y7zn + 2

22 tháng 7 2020

câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

16 tháng 6 2016

Hỏi đáp Toán

16 tháng 6 2016

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

=>\(3x-\frac{1}{2}=0;\frac{1}{2}y+\frac{3}{5}=0\left(\left|3x-\frac{1}{2}\right|;\left|\frac{1}{2}y+\frac{3}{5}\right|\ge0\right)\)

=>\(x=\frac{1}{6};y=\frac{-6}{5}\)

b)\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

Ta lại có:

\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\)

=>\(\frac{3}{2}x+\frac{1}{9}=0;\frac{1}{5}y-\frac{1}{2}=0\Rightarrow x=-\frac{2}{27};y=\frac{5}{2}\)