\(\dfrac{x-9}{3}\)=\(\dfrac{x+y}{13}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

đề có sai ko bạn

bạn coi kĩ lại đi

cái chỗ \(x-9\) ấy hay là x-y vậy? bạn coi kĩ lại giúp mk

12 tháng 8 2017

Theo đề bài ta có :

\(\dfrac{x-y}{3}=\dfrac{x+y}{13}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{x-y+x+y}{3+13}=\dfrac{2x}{16}=\dfrac{x}{8}\)

\(\dfrac{x}{8}=\dfrac{xy}{200}\Leftrightarrow\) \(\dfrac{x}{xy}=\dfrac{8}{200}\Rightarrow\) \(\dfrac{1}{y}=\dfrac{1}{25}\) \(\Rightarrow y=25\)

Thay y = 25 vào biểu thức ta có :

\(\dfrac{x-25}{3}=\dfrac{x+25}{13}\)

\(\Leftrightarrow\) \(13x-325=3x+75\)

\(\Leftrightarrow13x-3x=75+325\)

\(\Leftrightarrow10x=400\)

\(\Rightarrow x=40\)

Vậy \(x=40\) ; \(y=25\)

12 tháng 8 2017

Mơn ạk <3

22 tháng 6 2017

a, \(\left[x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\right]x^2-1\)

\(=\left[x\left(x^2-16\right)-\left(x^2+1\right)\right]x^2-1\)

\(=\left[x^3-16x-x^2-1\right]x^2-1\)

\(=x^5-16x^3-x^4-x^2-1\)

b, \(\left(y-3\right)y+3y^2+9-y^2+2\left(y^2-2\right)\)

\(=y^2-3y+3y^2+9-y^2+2y^2-4\)

\(=5y^2-3y+5\)

c, \(\left(x+y\right)\left(x^2x^2-xy+y^2\right)\)

\(=x^5-x^2y+xy^2+x^4y-xy^2+y^3\)

d, \(\left(\dfrac{1}{2}xy+\dfrac{3}{4}y\right).\dfrac{1}{2}xy-\dfrac{3}{4}y\)

\(=\dfrac{1}{4}x^2y^2+\dfrac{3}{8}xy^2-\dfrac{3}{4}y\)

\(=\dfrac{1}{4}y.\left(x^2y+\dfrac{3}{2}xy-3\right)\)

Chúc bạn học tốt!!!

22 tháng 6 2017

ban dùng tính chất phân phối ko

11 tháng 9 2019

Tính chất của dãy tỉ số bằng nhau

b: 2x^3-1=15

=>2x^3=16

=>x=2

\(\dfrac{x+16}{9}=\dfrac{y-25}{16}=\dfrac{z+9}{25}\)

=>\(\dfrac{y-25}{16}=\dfrac{z+9}{25}=\dfrac{18}{9}=2\)

=>y-25=32; z+9=50

=>y=57; z=41

d: 3/5x=2/3y

=>9x=10y

=>x/10=y/9=k

=>x=10k; y=9k

x^2-y^2=38

=>100k^2-81k^2=38

=>19k^2=38

=>k^2=2

TH1: k=căn 2

=>\(x=10\sqrt{2};y=9\sqrt{2}\)

TH2: k=-căn 2

=>\(x=-10\sqrt{2};y=-9\sqrt{2}\)

2 tháng 3 2017

Cách 1 : Lập từng TH :

TH1 : Nếu x , y , z đều dương

suy ra ko thỏa mãn do xz = -9/13 (âm ) (S)

TH2 : Nếu x , y dương , z âm

suy ra ko thỏa mãn do yz = 3/7 ( dương ) (S)

TH3 : x âm , y,z dương

suy ra không thỏa mãn do xy = 2/5 (dương) (S)

TH4 : x , y , z đều am

suy ra không thỏa mãn do xz = -9/13 ( âm ) (S)

TH5 : x,y âm z dương

suy ra không thỏa mãn do yz = 3/7 ( dương ) (S)

Từ 5 trường hợp trên =) ko có số bố (x,y,z) thỏa mãn

Cách 2 :

Theo bài ra , ta có :

\(xy=\dfrac{2}{5},yz=\dfrac{3}{7},xz=-\dfrac{9}{13}\)

\(\Rightarrow xy.yz.xz=\dfrac{2}{5}\times\dfrac{3}{7}\times-\dfrac{9}{13}=-\dfrac{54}{455}\)

\(\Rightarrow\left(xyz\right)^2=-\dfrac{54}{455}\)

\(\Rightarrow xyz=\sqrt{\left(-\dfrac{54}{455}\right)}\)(Không xác định được vì một số bình phương không thể âm

Suy ra không có bộ (x,y,z) nào thỏa mãn các đk trên

Chúc bạn hok tốt =))ok

7 tháng 11 2018

1. Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\)

+\(\dfrac{x}{6}=\dfrac{27}{4}\Rightarrow x=\dfrac{27.6}{4}=\dfrac{81}{2}\)

+\(\dfrac{y}{5}=\dfrac{27}{4}\Rightarrow y=\dfrac{27.5}{4}=\dfrac{135}{4}\)

+\(\dfrac{z}{3}=\dfrac{27}{4}\Rightarrow z=\dfrac{27.3}{4}=\dfrac{81}{4}\)

Vậy \(x=\dfrac{81}{2};y=\dfrac{135}{4};z=\dfrac{81}{4}\)

7 tháng 11 2018

2,Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{c}{4}=\dfrac{x+2y-3c}{2+2.3+3.4}=\dfrac{-20}{20}=-1\)

+\(\dfrac{x}{2}=-1\Rightarrow x=-1.2=-2\)

+\(\dfrac{y}{3}=-1\Rightarrow y=-1.3=-3\)

+\(\dfrac{c}{4}=-1\Rightarrow c=-1.4=-4\)

Vậy \(x=-2;y=-3;c=-4\)

b: Ta có: x/y=7/9

nên x/7=y/9

=>x/49=y/63

Ta có: y/z=7/3

nên y/7=z/3

=>y/63=z/27

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{49}=\dfrac{y}{63}=\dfrac{z}{27}=\dfrac{x-y+z}{49-63+27}=\dfrac{-15}{13}\)

Do đó: x=-735/13; y=-945/13; z=-405/13

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)

Do đó: x=14; y=40; z=64

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{x-y-z}{8-5-2}=3\)

Do đó: x=24; y=15; z=6

3 tháng 11 2018

e, Đặt \(\dfrac{x}{4}=\dfrac{y}{5}=k\left(k\in Z\right)\)

\(\Leftrightarrow x=4k,y=5k\) (1)

Theo bài ra ta có: xy = 80

Từ (1) \(\Rightarrow4k.5k=80\Rightarrow20.k^2=80\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k^2=2^2\\k^2=\left(-2\right)^2\end{matrix}\right.\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)

+ Với k = 2 \(\Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)

+ Với k = -2 \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-10\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(8,10\right);\left(-8,-10\right)\right\}\)

3 tháng 11 2018

a) \(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=\dfrac{-16}{4}=-4\Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}=-4\\\dfrac{y}{5}=-4\\\dfrac{z}{-2}=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-12\\y=-20\\z=8\end{matrix}\right.\)