K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2016

a) \(X^2+5X< 0\)

<=> \(X\left(X+5\right)< 0\)

<=> TH1: \(x< 0;x+5>0\Leftrightarrow-5< x< 0\)

 TH2: \(x>0;x+5< 0\Leftrightarrow0< x< -5\) (vô lí)

Vậy \(-5< x< 0\)

a: x+1>0

=>x>-1

b: -2x-3<0

=>-2x<3

=>x>-3/2

c: 4x+5>0

=>4x>-5

=>x>-5/4

d: -7x-3<0

=>-7x<3

=>x>-3/7

k: 3x+7>0

=>3x>-7

=>x>-7/3

l: -4x-1<0

=>-4x<1

=>x>-1/4

a: (2x-3)(3x+6)>0

=>(2x-3)(x+2)>0

=>x<-2 hoặc x>3/2

b: (3x+4)(2x-6)<0

=>(3x+4)(x-3)<0

=>-4/3<x<3

c: (3x+5)(2x+4)>4

\(\Leftrightarrow6x^2+12x+10x+20-4>0\)

\(\Leftrightarrow6x^2+22x+16>0\)

=>\(6x^2+6x+16x+16>0\)

=>(x+1)(3x+8)>0

=>x>-1 hoặc x<-8/3

f: (4x-8)(2x+5)<0

=>(x-2)(2x+5)<0

=>-5/2<x<2

h: (3x-7)(x+1)<=0

=>x+1>=0 và 3x-7<=0

=>-1<=x<=7/3

26 tháng 9 2017
toán lớp 7 mà đã học bpt hướng dẫn * tích lớn hơn 0 nên 2 nhân tử cùng dấu ( cùng + or cùng -) * <) thì trái dấu 1+;1-
26 tháng 9 2017

nếu >0 thì hai nhân tử cùng dấu

<0 thì trái dấu

11 tháng 11 2016

a) |x - 1| + |x - 3| < x + 1

Có: \(\left|x-1\right|+\left|x-3\right|\ge\left|x-1+3-x\right|=\left|2\right|=2\)

=> x + 1 > 2

=> x > 1

+ Với x < 3 thì |x - 1| + |x - 3| = (x - 1) + (3 - x) = 2

Mà x + 1 > 1 + 1 = 2 do x > 1, thỏa mãn

+ Với \(x\ge3\) thì |x - 1| + |x - 3| = (x - 1) + (x - 3) = 2x - 4 < x + 1

=> 2x - x < 1 + 4

=> x < 5

Vậy \(\left[\begin{array}{nghiempt}1< x< 3\\3\le x< 5\end{array}\right.\) thỏa mãn đề bài

 

 

11 tháng 11 2016

b) Có: \(\left|x+y+2\right|\ge0;\left|2y+1\right|\ge0\forall x;y\)

\(\Rightarrow\left|x+y+2\right|+\left|2y+1\right|\ge0\)

Mà theo đề bài: \(\left|x+y+2\right|+\left|2y+1\right|\le0\)

=> |x + y + 2| + |2y + 1| = 0

\(\Rightarrow\begin{cases}\left|x+y+2\right|=0\\\left|2y+1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x+y+2=0\\2y+1=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\2y=-1\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\y=\frac{-1}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{-3}{2}\\y=\frac{-1}{2}\end{cases}\)

Vậy \(x=\frac{-3}{2};y=\frac{-1}{2}\) thỏa mãn đề bài