Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(X^2+5X< 0\)
<=> \(X\left(X+5\right)< 0\)
<=> TH1: \(x< 0;x+5>0\Leftrightarrow-5< x< 0\)
TH2: \(x>0;x+5< 0\Leftrightarrow0< x< -5\) (vô lí)
Vậy \(-5< x< 0\)
a: x+1>0
=>x>-1
b: -2x-3<0
=>-2x<3
=>x>-3/2
c: 4x+5>0
=>4x>-5
=>x>-5/4
d: -7x-3<0
=>-7x<3
=>x>-3/7
k: 3x+7>0
=>3x>-7
=>x>-7/3
l: -4x-1<0
=>-4x<1
=>x>-1/4
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
a) |x - 1| + |x - 3| < x + 1
Có: \(\left|x-1\right|+\left|x-3\right|\ge\left|x-1+3-x\right|=\left|2\right|=2\)
=> x + 1 > 2
=> x > 1
+ Với x < 3 thì |x - 1| + |x - 3| = (x - 1) + (3 - x) = 2
Mà x + 1 > 1 + 1 = 2 do x > 1, thỏa mãn
+ Với \(x\ge3\) thì |x - 1| + |x - 3| = (x - 1) + (x - 3) = 2x - 4 < x + 1
=> 2x - x < 1 + 4
=> x < 5
Vậy \(\left[\begin{array}{nghiempt}1< x< 3\\3\le x< 5\end{array}\right.\) thỏa mãn đề bài
b) Có: \(\left|x+y+2\right|\ge0;\left|2y+1\right|\ge0\forall x;y\)
\(\Rightarrow\left|x+y+2\right|+\left|2y+1\right|\ge0\)
Mà theo đề bài: \(\left|x+y+2\right|+\left|2y+1\right|\le0\)
=> |x + y + 2| + |2y + 1| = 0
\(\Rightarrow\begin{cases}\left|x+y+2\right|=0\\\left|2y+1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x+y+2=0\\2y+1=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\2y=-1\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\y=\frac{-1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{-3}{2}\\y=\frac{-1}{2}\end{cases}\)
Vậy \(x=\frac{-3}{2};y=\frac{-1}{2}\) thỏa mãn đề bài