Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}=\dfrac{100}{\sqrt{100}}=10\left(đpcm\right)\)
2)
\(C=-18-\left|2x-6\right|-\left|3y+9\right|\le-18\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
\(.1.\)
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
Ta có : \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
....................
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
____________
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100=\sqrt{100}=10\)
Vậy : \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>0\)
Bài 2: Ta thấy:\(\left\{\begin{matrix}\left|2x-6\right|\ge0\\\left|3y+9\right|\ge0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}-\left|2x-6\right|\le0\\-\left|3y+9\right|\le0\end{matrix}\right.\)
\(\Rightarrow-\left|2x-6\right|-\left|3y+9\right|\le0\)
\(\Rightarrow-18-\left|2x-6\right|-\left|3y+9\right|\le-18\)
\(\Rightarrow C\le-18\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}-\left|2x-6\right|=0\\-\left|3y+9\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
Vậy với \(\left\{\begin{matrix}x=3\\y=-3\end{matrix}\right.\) thì C đạt GTLN là -18
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
\(C=-18-\left|2x-6\right|-\left|3y+9\right|\le-18\)
Dấu "=" khi: \(\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)