K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

Ta có: \(\left|x-3\right|\ge0\)

\(\left|y+15\right|\ge0\)

\(\Rightarrow A=\left|x-3\right|+\left|y+15\right|+2012\ge2012\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x-3\right|=0\\\left|y+15\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=-15\end{cases}}}\)

Vậy GTNN của A = 2012 tại x = 3 và y = -15

2 tháng 5 2017

ta thấy 

I x -3I >=0

Iy+15I>=0

=> I x-3I +Iy+15I>=0

=> I x-3I +Iy+15I+2012>=2012

hay A>= 2012

dấu bằng xảy ra <=> x-3=0   và   y+ 15=0

                        <=> x=3      và    y=-15 

vậy GTNN của A=2012 đạt được <=> x=3 và y=-15

14 tháng 7 2015

De P lon nhat thi 540 : (x-6) lon nhat. De 540:(x-6) lon nhat thi x-6 nho nhat. x-6 nho nhat th x-6=1=>x=1+6=7

De P nho nhat thi 540 :(x-6) nho nhat. De 540 nho nhat thi x-6 lon nhat. de x-6 lon nhat thi x-6=540=>x=546

27 tháng 11 2016

Vì |x - 2| luôn lớn hơn hoặc bằng 0 với mọi x

|y + 5| luôn lớn hơn hoặc bằng 0 với mọi y

=> |x - 2| + |y + 5| - 1000 luôn lớn hơn hoặc bằng -1000

=> A luôn lớn hơn hoặc bằng -1000

Dấu "=" xảy ra <=> x = 2 và y = -5

27 tháng 11 2016

GTNN của A=  -1000 khi:x=2

                                      y=-5 

3 tháng 1 2018

a)ta có:/y-1/>=0 với mọi y

           /y-1/+7>=7 với mọi y

dấu "=" xảy ra khi và chỉ khi:y-1=0=> y=1

vậy MIN của biểu thức là 7 tại y=1

23 tháng 2 2020

B =2012-| 3x + 3 | - ||x+3| + 2x| 

Ta có \(\hept{\begin{cases}\left|3x+3\right|\ge0\\\left|\left|x+3\right|+2x\right|\ge0\end{cases}\forall x}\)

\(\Leftrightarrow\left|3x+3\right|+\left|\left|x+3\right|+2x\right|\ge0\forall x\)

\(\Leftrightarrow-\left|3x+3\right|-\left|\left|x+3\right|+2x\right|\le0\forall x\)

\(\Leftrightarrow2012-\left|3x+3\right|-\left|\left|x+3\right|+2x\right|\le2012\forall x\)

\(\Leftrightarrow B\le2012\forall x\).

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|3x+3\right|=0\\\left|\left|x+3\right|+2x\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x+3=0\\\left|x+3\right|+2x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=-3\\\left|x+3\right|=-2x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\\left|-1+3\right|=-2.\left(-1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\2=2\end{cases}}\)

<=> x = 1

Vậy Max  = 2012 <=> x = 1

y ở đâu v bạn ~~?????

@@ Học tốt

Chiyuki Fujito

23 tháng 2 2020

                                                                  Bài giải

Ta có : \(B=2012-\left|3x+3\right|-||x+3|+2x|=2012-\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\)

B đạt GTLN khi \(\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\)đạt GTNN

Đặt \(C=\text{( }\left|3x+3\right|+||x+3|+2x|\text{ ) }\ge|3x+3+\text{ | }x+3\text{ |}+2x|\text{ }=\left|5x+3\text{ + | }x+3\text{ | }\right|\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}x\ge-1\text{ hoặc }x\le-1\\x=-1\end{cases}}\)

Vậy Min C = 0 khi x = - 1

Vậy Max B = 2012 khi x = - 1

11 tháng 1 2017

bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy

a)Ta thấy: \(\left|x-5\right|\ge0\)

\(\Rightarrow-\left|x-5\right|\le0\)

\(\Rightarrow1000-\left|x-5\right|\le1000\)

\(\Rightarrow A\le1000\)

Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)

Vậy \(Max_A=1000\) khi \(x=5\)

b)Ta thấy: \(\left|y-3\right|\ge0\)

\(\Rightarrow\left|y-3\right|+50\ge50\)

\(\Rightarrow B\ge50\)

Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy \(Min_B=50\) khi \(y=3\)

c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)

\(\Rightarrow C\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

11 tháng 1 2017

Khó vậy bạn

Mình mới lớp 7

Ai cho mình xin k nhé

Thanks

23 tháng 4 2017

B = (x2 - 16) + |y - 3| - 2 

B = x- 16 - 2 + |y + 3|

B = x2 - 18 + |y + 3|

Ta có :

x2 \(\ge0\)

|y + 3| \(\ge0\)

=> x2 + |y + 3| \(\ge0\)

=> x2 - 16 + |y + 3| \(\le16\)

\(\Leftrightarrow\hept{\begin{cases}x^2=0\\\left|y+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)

23 tháng 4 2017

Ta có: \(x^2\ge0\Rightarrow x^2-16\ge-16\)

Mà \(\left|y-3\right|\ge0\)

\(\Rightarrow\left(x^2-16\right)+\left|y-3\right|\ge-16\)

\(\Rightarrow B=\left(x^2-16\right)+\left|y-3\right|-2\ge-18\)

Dấu " = " khi \(\hept{\begin{cases}x^2-16=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=4;x=-4\\y=3\end{cases}}\)

Vậy MIN B = -18 khi x = -4 hoặc x = 4 và y = 3