![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đặt \(A=x^2-2x+1\)
Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A_{min}=0\)
Dấu "=" xảy ra khi: \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)
b) Ta có: \(M=x^2-3x+10\)
\(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)
\(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)
\(\Rightarrow\)\(M_{min}=\frac{31}{4}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)
Chúc bạn học tốt.
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có : \(pt\Leftrightarrow\left(x-y+3-\sqrt{-y^2+2y+3}\right)\left(x-y+3+\sqrt{-y^2+2y+3}\right)=0\)
\(\Leftrightarrow\) cái đó
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+5y^2+2x-4xy+10y+10=0\)
\(\Rightarrow x^2+4y^2-4xy+y^2+2x+10y+10=0\)
\(\Rightarrow\left(x-2y\right)^2+2\left(x-2y\right)+1+y^2+6y+9=0\)
\(\Rightarrow\left(x-2y+1\right)^2+y^2+2.3y+3^2=0\)
\(\Rightarrow\left(x-2y+1\right)^2+\left(y+3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}y=-3\\x+6+1=0\Leftrightarrow x=-7\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
-2x^2 - y^2 + 3xy + 4x - y = 7 1) ( PHƯƠNG TRÌNH (1) VÀ (2) LÀ 1 ngoặc { } )
{4X2 - 2Y2 + 6XY + X - 3Y = 6 (2)
b. { x2 + y2 - xy + 3x - 2y = 2 (3) [ PHƯƠNG TRÌNH (1) VÀ (2) LÀ 1 ngoặc { } ]
{2x2 - 3y2 + 3xy + x + 6y = 9 (4)
c. { 3x2 - y2 - 4xy + 7x - y - 6 = 0 (5) ( PHƯƠNG TRÌNH (5) VÀ (6) LÀ 1 )
{ 2x2 + y2 + 3x - 2y = 4 (6)