K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

\(x^2+2x^2y^2+2y^2-x^2y^2-2x^2-2=0\)

\(x^2-2x^2+2x^2y^2-x^2y^2+2y^2-2=0\)

\(-x^2+2y^2-2=0\)

\(-x^2+2.y^2-2=0\)

\(\Rightarrow-x^2+2=0\) và \(y^2-2=0\)

TH1: \(-x^2+2=0\) tự tìm x tiếp rất đơn giản như tìm x bình thường

TH2:\(y^2-2=0\) tương tự như TH1 tự tìm x tiếp rất đơn giản như tìm x binhf thương

sẵn tiện kp nhé

Bỏ ngoặc ta được:

\(x^2+2.x^2y^2+2y^2-x^2y^2-2x^2-2=0\)

\(=x^2y^2-x^2+2y^2-2=0\)

\(=x^2\left(y^2-1\right)+2\left(y^2-1\right)-2=0\)

\(=\left(y^2-1\right)\left(x^2+2\right)=2\)

\(=>\left(y^2-1\right),\left(x^2+2\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Rồi tự kẻ bảng ra nhé!

1 tháng 5 2017

<=> x2 + 2x2y2 + 2y2 - (x2y2 + 2x2) - 2 = 0

<=> x2 + 2x2y2 + 2y2 - x2y2 - 2x- 2 = 0

<=> -x2 + x2y2 + 2y2 - 2 = 0

<=> x2 (y2 - 1) + 2 (y- 1) = 0

<=> (x+ 2)(y2 - 1) = 0

Vì x2 + 2 > 0 với mọi x => y- 1 = 0 <=> y = ± 1.

Vậy x \(\in\)R, y = ± 1.

_Kik nha!! ^ ^

9 tháng 5 2018

<=>x2+2x2+2y2-x2y2-2x2-2=0

<=>-x2+x2y2+2y2-2=0

<=>x2(y2-1)+2(y2-1)=0

<=>(x2+2)(y2-1)=0

Vì x2+2>0 với mọi x=>y2-1=0<=>y=1 hoặc (-1)

Vậy x thuộc R,Y = 1 hoặc (-1

AH
Akai Haruma
Giáo viên
14 tháng 5 2019

Lời giải:

\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(=(x^3+x^2y-2x^2)-(xy+y^2-2y)+y+x-1\)

\(=x^2(x+y-2)-y(x+y-2)+(y+x-2)+1\)

\(=x^2.0-y.0+0+1=1\)

\(N=x^3-2x^2-xy^2+2xy+2y-2x-2\)

\(=(x^3-2x^2+x^2y)-(x^2y+xy^2-2xy)+2y+2x-4-4x+2\)

\(=x^2(x-2+y)-xy(x+y-2)+2(y+x-2)-4x+2\)

\(=x^2.0-xy.0+2.0-4x+2=2-4x\) (không tính được giá trị cụ thể, bạn thử xem lại đề)

\(P=(x^4+x^3y-2x^3)+(x^3y+x^2y^2-2x^2y)-x(x+y-2)\)

\(=x^3(x+y-2)+x^2y(x+y-2)-x(x+y-2)\)

\(=x^3.0+x^2y.0-x.0=0\)

1 tháng 4 2017

9/5 Nhớ cho mjnh nha

1 tháng 4 2017

ko đúng

9 tháng 5 2018

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

\(\Rightarrow x^2+2x^2y^2+2y^2-x^2y^2-2x^2-2=0\)

\(\Rightarrow x^2-2x^2+2x^2y^2-x^2y^2+2y^2-2=0\)

\(\Rightarrow-x^2+x^2y^2+2y^2-2=0\)

\(\Rightarrow x^2\left(-1+y^2\right)+\left(y^2-1\right)2=0\)

\(\Rightarrow\left(x^2+2\right)\left(y^2-1\right)=0\)

sau tự giải

14 tháng 5 2015

<=> x^2.y^2-x^2 +2y^2-2=0

<=> x^2 [y^2-1] + 2[y^2-1] = 0

<=> [y^2-1] .[x^2+2]=0

=> y= 1 hoặc -1, x tùy ý

đúng nhé

17 tháng 4 2019

<=> x^2.y^2-x^2 +2y^2-2=0

<=> x^2 [y^2-1] + 2[y^2-1] = 0

<=> [y^2-1] .[x^2+2]=0

=> y= 1 hoặc -1, x tùy ý

19 tháng 4 2018

x=0 y=-2

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

\(x^2+2x^2y^2+2y^2-x^2y^2-2x^2-2=0\)

\(\left(2x^2y^2-x^2y^2\right)+2y^2-\left(2x^2-x^2\right)-2=0\)

\(x^2y^2+2y^2-x^2-2=0\)

\(y^2\left(x^2+2\right)-\left(x^2+2\right)=0\)

\(\left(y^2-1\right)\left(x^2+2\right)=0\)

Thật sự xin lỗi nhưng đến đây mình không biết phải làm sao nữa. Sorry nha!!!!!!!!! Nhưng hình như là: y = 1 hoặc y = -1 còn x thuộc R thì phải!!!

       

30 tháng 4 2016

Mih làm tiếp nhé :

( y2 - 1 ) ( x2 + 2 ) 

TH1 

  • y2 - 1 = 0 =) y2 = 1 =) y= +- 1
  • x2 + 2 = 0 =) x2 = -2 =) ko thỏa mãn

TH2 Vì x2+2 ko thõa mãn x mà ( y2 - 1 ) = 0

=) x \(\in\) |R

Vậy y = +- 1 

        x \(\in\) |R