\(\left|x-2017\right|+\left|x-2018\right|+\left|y-2019\right|+\left|x+2020\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

khá dài đó đợi chút nha

13 tháng 8 2019

\(|2017-x|+|2018-x|+|2019-x|=2\left(1\right)\)

Ta có: \(2017-x=0\Leftrightarrow x=2017\)

          \(2018-x=0\Leftrightarrow x=2018\)

          \(2019-x=0\Leftrightarrow x=2019\)

Lập bảng xét dấu : 

2017-x 2018-x 2019-x 2017 2018 2019 0 0 0 - - - - - - + + + + + +

+) Với \(x\le2017\Rightarrow\hept{\begin{cases}2017-x\ge0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=2017-x\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(2\right)}}\)

Thay (2) vào(1) ta được : 

\(2017-x+2018-x+2019-x=2\)

\(6054-3x=2\)

\(3x=6052\)

\(x=\frac{6052}{3}>2017\)( loại )

+) Với \(2017< x\le2018\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :

\(x-2017+2018-x+2019-x=2\)

\(2020-x=2\)

\(x=2018\)( chọn )

+) Với \(2018< x\le2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=2019-x\end{cases}\left(4\right)}}\)

Thay (4) vào (1) ta được :

\(x-2017+x-2018+2019-x=2\)

\(x-2016=2\)

\(x=2018\)( loại )

+) Với \(x>2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x< 0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=x-2019\end{cases}\left(5\right)}}\)

Thay (5) vào (1) ta được :

\(x-2017+x-2018+x-2019=2\)

\(3x-6054=2\)

\(3x=6056\)

\(x=\frac{6056}{3}< 2019\)( loại )

Vậy x=2018

5 tháng 1 2020

\(\frac{x-4}{2017}+\frac{x-3}{2018}+\frac{x-2}{2019}+\frac{x-1}{2020}=4\\ \Leftrightarrow\left(\frac{x-4}{2017}-1\right)+\left(\frac{x-3}{2018}-1\right)+\left(\frac{x-2}{2019}-1\right)+\left(\frac{x-1}{2020}-1\right)=4-1-1-1\)

\(\Leftrightarrow\frac{x-2021}{2017}+\frac{x-2021}{2018}+\frac{x-2021}{2019}+\frac{x-2021}{2020}=0\)

\(\Leftrightarrow\left(x-2021\right)\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}+\frac{1}{2020}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2021=0\\\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}+\frac{1}{2020}\ne0\end{matrix}\right.\)

\(\Leftrightarrow x=2021\)

Vậy...

13 tháng 2 2020

\(A=\left|x-2017\right|+\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)

\(\Rightarrow A=\left|x-2017\right|+\left|x-2018\right|+\left|2019-x\right|+\left|2020-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2017\right|+\left|x-2018\right|+\left|2019-x\right|+\left|2020-x\right|\ge\left|x-2017+x-2018+2019-x+2020-x\right|\)

\(\Rightarrow A\ge\left|4\right|\)

\(\Rightarrow A\ge4.\)

Dấu '' = '' xảy ra khi:

\(\left(x-2017\right).\left(x-2018\right).\left(2019-x\right).\left(2020-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2017\ge0\\x-2018\ge0\\2019-x\ge0\\2020-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2017\le0\\x-2018\le0\\2019-x\le0\\2020-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2017\\x\ge2018\\x\le2019\\x\le2020\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2017\\x\le2018\\x\ge2019\\x\ge2020\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2018\le x\le2019\\x\in\varnothing\end{matrix}\right.\)

Vậy \(MIN_A=4\) khi \(2018\le x\le2019.\)

Chúc bạn học tốt!

Ta có:\(|x-2017|\ge0\)

          \(|2018-y|\ge0\)

          \(|z+2019|\ge0\)(hơi khác so vs đề của bạn nhưng hình như đề bạn sai)

Khi đó:\(|x-2017|+|2018-y|+|z+2019|=0\)Khi\(\hept{\begin{cases}x-2017=0\\2018-y=0\\z+2019=0\end{cases}}\)

Ta sẽ tính đc x = 2017, y = 2018, z = 2019