\(\frac{x}{5}\)=\(\frac{y}{4}\)và x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2020

Đặt \(\frac{x}{5}=\frac{y}{4}=k\)

\(\Rightarrow x=5k;y=4k\)

Ta có : \(x^2.y=100\)

\(\Rightarrow\left(5k\right)^2.4k=100\)

         \(25k^2.4k=100\)

             \(100k^3=100\)

                      \(k^3=1\)

                  \(\Rightarrow k=1\)

\(\Rightarrow x=5.1=5\)

      \(y=4.1=4\)

Vậy x = 5 ; y = 4

14 tháng 10 2020

Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)

x2.y = 100

=> ( 5k )2 . 4k = 100

=> 25k2.4k = 100

=> 100k3 = 100

=> k3 = 1

=> k = 1

=> \(\hept{\begin{cases}x=5\cdot1=5\\y=4\cdot1=4\end{cases}}\)

10 tháng 10 2020

TÍNH RỖ RA HẾT NHA THANKS

10 tháng 10 2020

Đặt \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)

xy = 12

<=> 4k.3k = 12

<=> 12k2 = 12

<=> k2 = 1

<=> k = ±1

Với k = 1 => x = 4 ; y = 3

Với k = -1 => x = -4 ; y = -3

27 tháng 6 2018

1)  1/x-1/y

=y/xy-x/xy

=y-x/xy

= - (x-y)/xy

= -1 (vì x-y=xy)

2)

(x- 1/2)*(y+1/3)*(z-2)=0

=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0

th1 :x-1/2=0 => x=1/2

x+2=y+3=z+4

mà x=1/2 => y= -1/2 ; z=-3/2

th2: y+1/3=0

th3 : z-2=0

(tự làm nha)

27 tháng 6 2018

1)  Với x,y khác 0, Ta có

\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)

Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)

2) Ta có:

\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)

Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)

Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)

Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)

Vậy......

21 tháng 7 2016

\(x:y:z=3:4:5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)

\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)

\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)

\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)

Vậy x = 27 ; y = 36 ; z = 45

21 tháng 7 2016

\(x+y=3\left(x-y\right)\)

\(\Rightarrow x+y=3x-3y\)

\(\Rightarrow y+3y=3x-x\)

\(\Rightarrow4y=2x\)

\(\Rightarrow2y=x\)

\(\Rightarrow x:y=2\)

\(\Rightarrow x+y=2y+y=2\)

\(\Rightarrow3y=2\)

\(\Rightarrow y=\frac{2}{3}\)

\(\Rightarrow x=\frac{4}{3}\)

Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)

7 tháng 7 2016

Bài 1:

a)\(\left(2x+5\right)\left(6y-7\right)=13\)

=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}

  • Với 2x+5=13 =>x=4      =>6y-7=1 =>y=4/3 (loại)
  • Với 2x+5=-13 =>x=-9    =>6y-7=-1 =>y=1 (tm)
  • Với 2x+5=-1 =>x=-3      =>6y-7=-13 =>y=-1 (tm)
  • Với 2x+5=1  =>x=-2      =>6y-7=13=13 =>y=10/3 (loại)

Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)

2)xy+x+y=0

=>xy+x+y+1=1

=>(xy+x)+(y+1)=1

=>x(y+1)+(y+1)=1

=>(x+1)(y+1)=1

Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé

c)xy-x-y+1=0

=>(x-1)y-x+1=0

=>(x-1)y-x-0+1=0

=>(x-1)(y-1)=0

  • Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z) 
  • Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn

d và e bn phân tích ra tính tương tự

Bài 2:

a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)

=>4 chia hết x+1

=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}

Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp

b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)

=>2 chia hết x+3 

=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé

c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)

=>4 chia hết 2x+4

=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé

6 tháng 10 2018

a) ĐKXĐ: \(x\ne-1\)

Ta có:

\(\frac{x+1}{8}=\frac{8}{x+1}\)

\(\Rightarrow\left(x+1\right)^2=8^2\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=8\\x+1=-8\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-9\end{cases}\left(TMĐKXĐ\right)}\)

\(\)

6 tháng 10 2018

a, \(\frac{x+1}{8}=\frac{8}{x+1}\)

\(\Leftrightarrow\left(x+1\right)^2=8.8\)

\(\Leftrightarrow\left(x+1\right)=\pm8\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=8\\x+1=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-9\end{cases}}}\)

b, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\left(2x+3y=186\right)\)

Theo đề bài ta có:

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3.5}=\frac{y}{4.5}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5.4}=\frac{z}{7.4}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y}{90}=\frac{186}{90}=\frac{31}{15}\)

\(\Rightarrow\frac{2x}{30}=\frac{31}{15}\Rightarrow2x=62\Rightarrow x=31\)

\(\frac{3y}{60}=\frac{31}{15}\Rightarrow3y=124\Rightarrow y=\frac{124}{3}\)

Mà \(\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{\frac{124}{3}}{20}=\frac{z}{28}\Rightarrow\frac{31}{15}=\frac{z}{28}\)

Từ đây bạn tìm nốt z nha

22 tháng 7 2019

Câu 1: ĐẶt \(\frac{x}{5}=\frac{y}{4}=k\)\(\Rightarrow x=5k;......y=4k\)

Ta có: \(x^2y=\left(5k\right)^2.\left(4k\right)=400k^3=100\)

\(\Rightarrow k^3=\frac{1}{4}\Rightarrow k=\sqrt[3]{\frac{1}{4}}\)

Vậy \(x=5k=4\sqrt[3]{\frac{1}{4}}\)

\(y=4.\sqrt[3]{\frac{1}{4}}\)

Câu 3 4 5 tương tư:

câu 2. bạn biến đổi: \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)thì sẽ trở thành dạng quen thuộc ở trên. :))

22 tháng 7 2019

Bạn ơi mình chưa học cách bạn làm

4 tháng 11 2019

Ta có: x + y + z = 36 . (2018 - 2019) = 36 . (-1) = -36

Lại có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)\(\Rightarrow\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4x\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)

\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)

Do đó: \(\frac{3x-2y}{4}=0\)\(\Rightarrow3x-2y=0\)\(\Rightarrow3x=2y\)\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)(1)

            \(\frac{2z-4x}{3}=0\)\(\Rightarrow2z-4x=0\)\(\Rightarrow2z=4x\)\(\Rightarrow\frac{x}{2}=\frac{z}{4}\)(2)

Từ (1), (2) \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{-36}{9}=-4\)

Do đó: \(\hept{\begin{cases}\frac{x}{2}=-4\\\frac{y}{3}=-4\\\frac{z}{4}=-4\end{cases}\Rightarrow}\hept{\begin{cases}x=-8\\y=-12\\z=-14\end{cases}}\)

Vậy...