Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
xy = 12
<=> 4k.3k = 12
<=> 12k2 = 12
<=> k2 = 1
<=> k = ±1
Với k = 1 => x = 4 ; y = 3
Với k = -1 => x = -4 ; y = -3
1) 1/x-1/y
=y/xy-x/xy
=y-x/xy
= - (x-y)/xy
= -1 (vì x-y=xy)
2)
(x- 1/2)*(y+1/3)*(z-2)=0
=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0
th1 :x-1/2=0 => x=1/2
x+2=y+3=z+4
mà x=1/2 => y= -1/2 ; z=-3/2
th2: y+1/3=0
th3 : z-2=0
(tự làm nha)
1) Với x,y khác 0, Ta có
\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)
Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)
2) Ta có:
\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)
Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)
Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)
Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)
Vậy......
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)
\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)
Vậy x = 27 ; y = 36 ; z = 45
\(x+y=3\left(x-y\right)\)
\(\Rightarrow x+y=3x-3y\)
\(\Rightarrow y+3y=3x-x\)
\(\Rightarrow4y=2x\)
\(\Rightarrow2y=x\)
\(\Rightarrow x:y=2\)
\(\Rightarrow x+y=2y+y=2\)
\(\Rightarrow3y=2\)
\(\Rightarrow y=\frac{2}{3}\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)
Bài 1:
a)\(\left(2x+5\right)\left(6y-7\right)=13\)
=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}
- Với 2x+5=13 =>x=4 =>6y-7=1 =>y=4/3 (loại)
- Với 2x+5=-13 =>x=-9 =>6y-7=-1 =>y=1 (tm)
- Với 2x+5=-1 =>x=-3 =>6y-7=-13 =>y=-1 (tm)
- Với 2x+5=1 =>x=-2 =>6y-7=13=13 =>y=10/3 (loại)
Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)
2)xy+x+y=0
=>xy+x+y+1=1
=>(xy+x)+(y+1)=1
=>x(y+1)+(y+1)=1
=>(x+1)(y+1)=1
Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé
c)xy-x-y+1=0
=>(x-1)y-x+1=0
=>(x-1)y-x-0+1=0
=>(x-1)(y-1)=0
- Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z)
- Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn
d và e bn phân tích ra tính tương tự
Bài 2:
a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)
=>4 chia hết x+1
=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp
b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)
=>2 chia hết x+3
=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé
c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)
=>4 chia hết 2x+4
=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé
a) ĐKXĐ: \(x\ne-1\)
Ta có:
\(\frac{x+1}{8}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=8^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=8\\x+1=-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-9\end{cases}\left(TMĐKXĐ\right)}\)
\(\)
a, \(\frac{x+1}{8}=\frac{8}{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=8.8\)
\(\Leftrightarrow\left(x+1\right)=\pm8\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=8\\x+1=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-9\end{cases}}}\)
b, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\left(2x+3y=186\right)\)
Theo đề bài ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3.5}=\frac{y}{4.5}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5.4}=\frac{z}{7.4}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y}{90}=\frac{186}{90}=\frac{31}{15}\)
\(\Rightarrow\frac{2x}{30}=\frac{31}{15}\Rightarrow2x=62\Rightarrow x=31\)
\(\frac{3y}{60}=\frac{31}{15}\Rightarrow3y=124\Rightarrow y=\frac{124}{3}\)
Mà \(\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{\frac{124}{3}}{20}=\frac{z}{28}\Rightarrow\frac{31}{15}=\frac{z}{28}\)
Từ đây bạn tìm nốt z nha
Câu 1: ĐẶt \(\frac{x}{5}=\frac{y}{4}=k\)\(\Rightarrow x=5k;......y=4k\)
Ta có: \(x^2y=\left(5k\right)^2.\left(4k\right)=400k^3=100\)
\(\Rightarrow k^3=\frac{1}{4}\Rightarrow k=\sqrt[3]{\frac{1}{4}}\)
Vậy \(x=5k=4\sqrt[3]{\frac{1}{4}}\)
\(y=4.\sqrt[3]{\frac{1}{4}}\)
Câu 3 4 5 tương tư:
câu 2. bạn biến đổi: \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)thì sẽ trở thành dạng quen thuộc ở trên. :))
Ta có: x + y + z = 36 . (2018 - 2019) = 36 . (-1) = -36
Lại có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)\(\Rightarrow\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4x\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)
Do đó: \(\frac{3x-2y}{4}=0\)\(\Rightarrow3x-2y=0\)\(\Rightarrow3x=2y\)\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)(1)
\(\frac{2z-4x}{3}=0\)\(\Rightarrow2z-4x=0\)\(\Rightarrow2z=4x\)\(\Rightarrow\frac{x}{2}=\frac{z}{4}\)(2)
Từ (1), (2) \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{-36}{9}=-4\)
Do đó: \(\hept{\begin{cases}\frac{x}{2}=-4\\\frac{y}{3}=-4\\\frac{z}{4}=-4\end{cases}\Rightarrow}\hept{\begin{cases}x=-8\\y=-12\\z=-14\end{cases}}\)
Vậy...
Đặt \(\frac{x}{5}=\frac{y}{4}=k\)
\(\Rightarrow x=5k;y=4k\)
Ta có : \(x^2.y=100\)
\(\Rightarrow\left(5k\right)^2.4k=100\)
\(25k^2.4k=100\)
\(100k^3=100\)
\(k^3=1\)
\(\Rightarrow k=1\)
\(\Rightarrow x=5.1=5\)
\(y=4.1=4\)
Vậy x = 5 ; y = 4
Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)
x2.y = 100
=> ( 5k )2 . 4k = 100
=> 25k2.4k = 100
=> 100k3 = 100
=> k3 = 1
=> k = 1
=> \(\hept{\begin{cases}x=5\cdot1=5\\y=4\cdot1=4\end{cases}}\)