K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

Áp dụng tính chất dẫy hữu tỉ số bằng nhau

Ta có : \(\frac{x^2+y^2}{x^2+1+y^2}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}=\frac{x^2+y^2+x^2+y^2}{x^2+1+y^2+x^2+1+y^2+1}=\frac{x^2+y^2+x^2+y^2}{x^2+y^2+x^2+y^2+3}=1+\frac{x^2+y^2+x^2+y^2}{3}\)

 

12 tháng 12 2016

sorry mấy bạn =x+y+z chứ ko phải =x+y=z :P 

25 tháng 2 2020

Nhầm các bạn ơi : Tìm x,y biết \(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\)mong các bạn giúp mình

25 tháng 2 2020

\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\)nhầm part 2 srry mọi người

12 tháng 7 2016

\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)

\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn

Bài 2:

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Bạn tự làm nha

12 tháng 7 2016

Bài 1 :

\(\frac{x}{y}=\frac{5}{3}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )

\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)

\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)

Mà x ; y cùng dấu nên :

\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)

Bài 2 :

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)

\(\frac{x}{10}=3\Rightarrow x=30\)

\(\frac{y}{15}=3\Rightarrow y=45\)

\(\frac{z}{21}=3\Rightarrow z=63\)

1 tháng 1 2020

(x^2-2+1/x^2 ) +( y^2-2+1/y^2) +(z^2-2+1/z^2) =0

=> (x-1/x)^2 +(y-1/y)^2+(z-1/z)^2=0

suy ra x-1/x=0 

          y-1/y=0

         z-1/z=0

.....

4 tháng 3 2020

Ta có: \(x^2+\frac{1}{x^2}\ge2\sqrt{x^2.\frac{1}{x^2}}=2\)

\(y^2+\frac{1}{y^2}\ge2\sqrt{y^2.\frac{1}{y^2}}=2\)

\(z^2+\frac{1}{z^2}\ge2\sqrt{x^2.\frac{1}{z^2}}=2\)

\(\Rightarrow VT\ge6\)

Dấu "=" khi \(\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)

3 tháng 4 2017

\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{x}+\frac{1}{x^2}+y^2-2\cdot y\cdot\frac{1}{y}+\frac{1}{y^2}=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=-1\\x=1\end{cases}}\\\orbr{\begin{cases}y=-1\\y=1\end{cases}}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=-1\\x=1\end{cases}}\\\orbr{\begin{cases}y=1\\y=-1\end{cases}}\end{cases}}\)\(x-\frac{1}{x}=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

\(y-\frac{1}{y}=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)