Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
=>x.y=2k.5k
40 = 10k^ 2
k^ 2 = 4
k = +-2
Với :k=2 ⇒ x=2.2=4 ; y=2.5=10
Với : k=-2 ⇒ x=-2.2=-4 ; y=-2.5=-10
Vậy : x=2 ; y=10 hoặc x=-2 ; y=-10
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
Bài 5:
Theo đề ra, ta có:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
Trường hợp 1: Với \(k=2\)
\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)
\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)
Trường hợp 2: Với \(k=-2\)
\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)
\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)
\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)
\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)
\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)
Ta có: \(\frac{x}{y}=\frac{2}{5}=\frac{x}{2}=\frac{y}{5}\) và \(x.y=40\)
Đặt: \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x.y=2k.5k\)
\(40=10k^2\)
\(k^2=4\)
\(k=+-2\)
Với: \(k=2\Rightarrow x=2.2=4;y=2.5=10\)
Với: \(k=-2\Rightarrow x=-2.2=-4;y=-2.5=-10\)
Với: \(x=2;y=10\)hoặc \(x=-2;y=-10\)
x/2=y/5 =>x=2/5y
x.y=90 =>y.2/5y=90=>y2=225=>y=15
=>x=90:15
=>x=6
Vậy x=6,y=15
Ta có : \(\frac{x}{2}=\frac{y}{5}\Leftrightarrow2y=5x\Rightarrow y=\frac{2y}{5}\)
Thay \(y=\frac{2y}{5}\)vào biểu thức \(xy=90\); ta được :
\(\frac{2y}{5}\cdot y=90\Leftrightarrow2y^2=90.5\Leftrightarrow2y^2=450\Leftrightarrow y^2=225\Leftrightarrow y=15\)
Vì \(y=15\Rightarrow x=\frac{2.15}{5}=6\)
Vậy \(x;y=\left[6;15\right]\)
a. Ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{-12}{-2}=6\)
=> \(\hept{\begin{cases}x=6.5=30\\y=6.7=42\end{cases}}\)
b. x.8 = y. 16
=> \(\frac{x}{16}=\frac{y}{8}=\frac{y-x}{8-16}=\frac{64}{-8}=-8\)
=> \(\hept{\begin{cases}x=-8.16=-128\\y=-8.8=-64\end{cases}}\)
c.Ta có: \(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{x-y}{2+5}=\frac{7}{7}=1\)
=> \(\hept{\begin{cases}x=1.2=2\\y=1.\left(-5\right)=-5\end{cases}}\)
d. Ta có: xy = 10 => x = \(\frac{10}{y}\)(1)
Thay (1) vào \(\frac{x}{2}=\frac{y}{5}\), ta được:
\(\frac{10}{\frac{y}{2}}=\frac{y}{5}\)=> \(\frac{5}{y}=\frac{y}{5}\)
=> y2 = 25
=> y = + 5
y = 5 => x = \(\frac{10}{y}\)= \(\frac{10}{5}\)= 2
y = -5 => x = \(\frac{10}{y}\)= \(\frac{10}{-5}\) = -2
Vậy y = 5; x = 2
y = - 5: x = -2
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
Mà \(x-y=-12\)
\(\Rightarrow5k-7k=-12\)
\(\Leftrightarrow-2k=-12\)
\(\Leftrightarrow k=6\)
\(\Rightarrow\hept{\begin{cases}x=5k=30\\y=7k=42\end{cases}}\)
Vậy ...
b) Ta có : \(x.8=y.16\Leftrightarrow\frac{x}{16}=\frac{y}{8}\)
Đặt \(\frac{x}{16}=\frac{y}{8}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=16k\\y=8k\end{cases}}\)
Mà \(y-x=64\)
\(\Rightarrow8k-16k=64\)
\(\Leftrightarrow-8k=64\)
\(\Leftrightarrow k=-2\)
\(\Rightarrow\hept{\begin{cases}x=16k=-32\\y=8k=-16\end{cases}}\)
Vậy ...
đặt x/3=y/5=k(k khác 0) =>x=3k; y=5k
=> x.y=3k .5k=15.k^2=135
=k^2=135:15=9=3^2 hoặc (-3)^2
th1:k=3=> x=9;y=15
th2:k=-3=>x=-9;y=-15
#)Giải :
Đặt \(\frac{x}{3}=\frac{y}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)
\(\Rightarrow xy=3k.5k=135\)
\(\Rightarrow15k^2=135\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
\(\hept{\begin{cases}x=3.3=9\\y=3.5=15\end{cases}}\)
\(\hept{\begin{cases}x=-3.3=-9\\y=-3.5=-15\end{cases}}\)
Vậy x có hai bộ số (x,y) là (9,15) ; (-9,-15)
\(\frac{x}{y}=\frac{5}{7}=\frac{x}{7}=\frac{y}{5}\) và x + y = 4,08
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{7}=\frac{y}{5}=\frac{x+y}{7+5}=\frac{4,08}{12}=\frac{17}{50}\)
\(\frac{x}{7}=\frac{17}{50}\Rightarrow x=\frac{17.7}{50}=\frac{119}{50}\)
\(\frac{y}{5}=\frac{17}{50}\Rightarrow y=\frac{17.5}{50}=\frac{17}{10}\)
Vậy..
Còn 2 cách kia là j???
a, \(\frac{x}{y}=\frac{5}{7}\)và x+y=4,08
Ta có: 4,08=\(\frac{102}{25}\)
\(\frac{x}{y}=\frac{5}{7}\Rightarrow7x=5y\)
\(\Rightarrow\frac{x}{5}=\frac{y}{7}\)và x+y=\(\frac{102}{25}\)
theo t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{\frac{102}{25}}{12}=\frac{17}{50}\)
\(\Rightarrow\frac{x}{5}=\frac{17}{50}\Rightarrow x=\frac{17}{10}\)
\(\frac{y}{7}=\frac{17}{50}\Rightarrow y=\frac{119}{50}\)
vậy x=
y=
x/2=y/5=k suy ra x=2k; y=5k
5kx2k=40
10k^2=40
k^2=40:10=4
k=-2(x;y<0)
ta có; x=-2x2=-4
y=-2x5=-10
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow\frac{x.y}{2.5}=\frac{40}{10}=4\)
\(\Rightarrow\frac{x}{2}=4\Rightarrow x=8\)
\(\Rightarrow\frac{y}{5}=4\Rightarrow y=20\)
Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow x=2k,y=5k\)
mà x.y = 40
\(\Rightarrow2.k.5.k=40\)
\(\Rightarrow10.k^2=40\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
+) \(k=2\Rightarrow x=4,y=10\)
+) \(k=-2\Rightarrow x=-4,y=-10\)
Vậy các cặp số ( x, y ) là \(\left(4,10\right);\left(-4,-10\right)\)
Đặt \(\frac{x}{2}=\frac{y}{5}\)=k ta có: x=2k; y=5k
\(\Rightarrow\)2k.5k=40
\(\Rightarrow\)10k\(^2\)=40
\(\Rightarrow\)k\(^2\)=40:10
\(\Rightarrow\)k\(^2\)=4
=>k=+-2
Với k=2=>x=4;y=10
Với k=-2=>x=-4;y=-10
Vậy (x;y)=(4;10)=(-4;-10)