K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2019

b. Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath

a) \(\frac{x-1}{-15}\)=\(\frac{-60}{x-1}\)

=> (x-1).(x-1)=-60.(-15)

=>(x-1)2=900

=>(x-1)2=302

=>x-1=30

=>x=30+1

=>x=31

học tốt

28 tháng 10 2019

b. Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath

19 tháng 5 2017

a)\(\frac{x-1}{-15}=-\frac{60}{x-1}\)(đk x khác 1)

\(< =>\left(x-1\right)^2=-60.-15=900\)

\(=>\orbr{\begin{cases}x-1=30\\x-1=-30\end{cases}< =>\orbr{\begin{cases}x=31\\x=-29\end{cases}\left(tmđk\right)}}\)

b)\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)(*)

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

=>\(6x=12=>x=2\)

thay vào (*)=>\(\frac{3y-2}{7}=1=>y=3\)

19 tháng 5 2017

\(a,\frac{x-1}{-15}=-\frac{60}{x-1}\)

\(=>\left(x-1\right)^2=-15.-60\)

\(=>\left(x-1\right)^2=900\)

\(=>\left(x-1\right)^2=\left(31-1\right)^2\)

=> x = 31

24 tháng 3 2016

\(a\left(x=31\right)\)

\(b\left(x=2;y=3\right)\)

9 tháng 7 2017

Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Dựa theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

-> x = \(12.\dfrac{3}{2}=18\)

y =\(12.\dfrac{4}{3}=16\)

z =\(12.\dfrac{5}{4}\) = 15

21 tháng 7 2019

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

\(\Rightarrow\frac{2x+1}{5}=k\rightarrow2x+1=5k\rightarrow2k=5k-1\)

\(\frac{3y-2}{7}=k\rightarrow3y-2=7k\rightarrow3y=2k+2\)

 \(\frac{2x+3y-1}{6x}=k\rightarrow2x+3y-1=6x.k\)

                                     \(\rightarrow5k-1+7k+2-1=k.3\left(5k-1\right)\)

                                     \(\rightarrow12k=15k^2-3k\)

                                      \(\rightarrow15k^2-15k=0\)

                                       \(\rightarrow15k\left(k-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}k=0\rightarrow x=\frac{-1}{2};y=\frac{2}{3}\\k=1\rightarrow x=2;y=3\end{cases}}\)

18 tháng 7 2018

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}\)

\(\Rightarrow\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

TH 1 : \(2x+3y-1=0\)

\(\Rightarrow\frac{2x+1}{5}=0;\frac{3y-2}{7}=0\)

\(\Rightarrow2x+1=0;3y-2=0\)

\(\Rightarrow2x=-1;3y=2\)

\(\Rightarrow x=-\frac{1}{2};y=\frac{2}{3}\)

TH 2 : \(2x+3y-1\ne0\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

Mà \(\frac{2x+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow\frac{2.2+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow1=\frac{3y-2}{7}\)

\(\Rightarrow3y-2=7\)

\(\Rightarrow3y=9\)

\(\Rightarrow y=3\)

Vậy \(\orbr{\begin{cases}x=-\frac{1}{2};y=\frac{2}{3}\\x=2;y=3\end{cases}}\)

18 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau :

\(\Rightarrow\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

Do \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

\(\Rightarrow6x=12\Leftrightarrow x=2\)

Xét :\(\frac{2x+1}{5}=\frac{3y-2}{7}\)

\(1=\frac{3y-2}{7}\)

\(\Rightarrow3y=9\Leftrightarrow y=3\)

6 tháng 6 2016

a) Theo tính chất của dãu tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{15}\)

=> 6x = 15

=> x = 5/2

Thay x = 5/2, ta có:

\(\frac{2.\frac{5}{2}+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow\frac{3y-2}{7}=\frac{6}{5}\)

\(\Rightarrow3y-2=\frac{6}{5}.7=\frac{42}{5}\)

\(\Rightarrow3y=\frac{52}{5}\)

\(\Rightarrow y=\frac{52}{15}\)

Mình ăn cơm đây, câu b tối làm cho

Ta có : \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

Nên : \(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

<=> 6x = 12

=> x = 2 . 

1 tháng 11 2017

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}\)

\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

\(\Rightarrow6x=12\)

\(\Rightarrow x=2\)

21 tháng 12 2016

x=2

y=3

20 tháng 2 2017

Áp dụng TC DCTSBN ta có :

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\Rightarrow x=2\)

Thay x = 2 và 2 TLT đầu ta được :

\(\frac{2.2+1}{5}=\frac{3y-2}{7}\)

\(\Leftrightarrow\frac{3y-2}{7}=1\)

\(\Rightarrow3y-2=7\Rightarrow y=3\)

Vậy x = 2 và y = 3