Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
a)
( 2x + 1 ) . ( y - 3 ) = 12
Vì 2x +1 là số lẻ.
Do ( 2x + 1 ) . ( y - 3) = 12
=> 2x + 1 : y - 3 thuộc Ư ( 12) = { 1 ; 2 ; 3 ; 4 ; 6 ; 12 }
=> 2 x +1 = 1 => x= 0
hoặc y - 3 = 12 => y = 15
=> 2x + 1 = 3 => x = 2
hoặc y - 3 = 4 => y = 7
=> 2x + 1 = 2 ( L)
VẬY ( x ; y) = { ( 0 ; 15 ) ; ( 2 ; 7) }
a: \(\left(x,y\right)\in\left\{\left(1;-9\right);\left(-9;1\right);\left(-1;9\right);\left(9;-1\right);\left(3;-3\right);\left(-3;3\right)\right\}\)
Bài 1:
a: Ta có: \(48751-\left(10425+y\right)=3828:12\)
\(\Leftrightarrow y+10425=48751-319=48432\)
hay y=38007
b: Ta có: \(\left(2367-y\right)-\left(2^{10}-7\right)=15^2-20\)
\(\Leftrightarrow2367-y=1222\)
hay y=1145
Bài 2:
Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)
\(\Leftrightarrow288:\left(x-3\right)^2=2\)
\(\Leftrightarrow\left(x-3\right)^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
Lời giải:
a. Vì $x,y$ thuộc $Z$ nên $x-3, y+5\in\mathbb{Z}$. Tích của chúng $=11$ nên ta có bảng sau:
x-3 | 1 | 11 | -1 | -11 |
y+5 | 11 | 1 | -11 | -1 |
x | 4 | 14 | 2 | -8 |
y | 6 | -4 | -16 | -6 |
b. Vì $x,y\in\mathbb{Z}$ nên $2x+1, 6-y\in\mathbb{Z}$.
Với $x$ nguyên thì $2x+1$ là số nguyên lẻ nên ta có bảng sau:
2x+1 | 1 | -1 | 3 | -3 |
6-y | 12 | -12 | 4 | -4 |
x | 0 | -1 | 1 | -2 |
y | -6 | 18 | 2 | 10 |
a: \(\left(x,y\right)\in\left\{\left(1;-21\right);\left(-21;1\right);\left(-1;21\right);\left(21;-1\right);\left(3;-7\right);\left(-7;3\right);\left(-3;7\right);\left(7;-3\right)\right\}\)
b: \(\Leftrightarrow\left(x,y-3\right)\in\left\{\left(1;-6\right);\left(-6;1\right);\left(2;-3\right);\left(-3;2\right);\left(-2;3\right);\left(3;-2\right);\left(6;-1\right);\left(-1;6\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(1;-3\right);\left(-6;4\right);\left(2;0\right);\left(-3;-1\right);\left(-2;6\right);\left(3;1\right);\left(6;2\right);\left(-1;9\right)\right\}\)
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
a) x+7=-12
x=(-12)-7
x=-19
b)x-15=-21
x=(-21)+15
x=-6
c)13-x=20
x=13-20
x=-7
d)17-(2+x)=3
x=17-3
x=14
x=14-2
x=12
x(y+3)+2(y+3)=0
(x+2).(y+3)=0
x+2=0 hoặc y+3=0
x=-2 hoặc y=-3 thỏa man:|-2|+|-3|=5