Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x+1\right)^2+3y^2=21\)
Ta có: x,y nguyên
=>\(\left(x+1\right)^2;y^2\) là các số chính phương
mà \(2\left(x+1\right)^2+3y^2=21\)
nên \(\left[2\left(x+1\right)^2;3y^2\right]\in\left\{\left(18;3\right)\right\}\)
=>\(\left(\left(x+1\right)^2;y^2\right)\in\left(9;1\right)\)
=>\(\left(x+1;y\right)\in\left\{\left(3;-1\right);\left(3;1\right);\left(-3;-1\right);\left(-3;1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(2;-1\right);\left(2;1\right);\left(-4;-1\right);\left(-4;1\right)\right\}\)
\(2\left(x+1\right)^2+3y^2=21\left(1\right)\)
Ta có: 2(x+1)2+3y2=21≥3y2⇒y2≤7
Mà y2 là SCP nên \(y^2\in\left\{0;1;4\right\}\)
Với \(y^2=0\Rightarrow y=0\), thay vào (1) ta có:
\(2\left(x+1\right)^2+3.0^2=21\\ \Rightarrow2\left(x+1\right)^2=21\\ \Rightarrow\left(x+1\right)^2=\dfrac{21}{2}\left(ktm\right)\)
Với \(y^2=1\Rightarrow y=\pm1\), thay vào (1) ta có:
\(2\left(x+1\right)^2+3.\left(\pm1\right)^2=21\\ \Rightarrow2\left(x+1\right)^2+3=21\\ \Rightarrow\left(x+1\right)^2=9\\ \Rightarrow\left[{}\begin{matrix}x+1=-3\\x+1=3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Với \(y^2=4\Rightarrow y=\pm2\), thay vào (1) ta có:
\(2\left(x+1\right)^2+3.\left(\pm2\right)^2=21\\ \Rightarrow2\left(x+1\right)^2+12=21\\ \Rightarrow\left(x+1\right)^2=\dfrac{9}{2}\left(ktm\right)\)
Vậy \(\left(x,y\right)\in\left\{\left(-4;1\right);\left(-4;-1\right);\left(2;1\right);\left(2;-1\right)\right\}\)
Chọn A
Ta có: P(x) = 2x2 - 3y2 + 5y2 - 1 + 5x2 - 4y2
= 7x2 - 2y2 - 1.
Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
2x^2-3y^2+4z^2=280
=>2*9k^2-3*16k^2+4*25k^2=280
=>k^2=4
TH1: k=2
=>x=6; y=8; z=10
TH2: k=-2
=>x=-6; y=-8; z=-10
Ta có \(2x^2-2xy=5x-y-19\Leftrightarrow2x^2-5x+19=2xy-y\)
<=>\(\frac{2x^2-5x+19}{2x-1}=y\)
Mà y là số nguyên =>\(\frac{2x^2-5x+19}{2x-1}\in Z\Leftrightarrow\frac{2x^2-x-4x+2+17}{2x-1}\in Z\)
\(\Leftrightarrow2x-2+\frac{17}{2x-1}\in Z\Leftrightarrow\frac{17}{2x-1}\in Z\Rightarrow17⋮2x-1\)
đến đây lấp bảng nhé !
^_^
\(A=\left[6y^3-3y^2+y+1\right]-y-y^2-y^3-y^2\)
\(=5y^3-5y^2+1\)
\(B=2ax^2-2x^2-a-a+x^2+ax=2ax^2-x^2-2a+ax\)
\(C=\left(p^3+1+2p^3+6p^2-2p^3\right)\cdot3p^2-3p^5\)
\(=\left(p^3+6p^2+1\right).3p^2-3p^5=18p^4+3p^2\)