Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
nên x=5k; y=3k
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow25k^2-9k^2=4\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
a) Ta có: \(-3x=7y=21z\)
\(\Rightarrow-3x\cdot\frac{1}{21}=7y\cdot\frac{1}{21}=21z\cdot\frac{1}{21}\)
\(\Rightarrow\frac{x}{-7}=\frac{y}{3}=\frac{z}{1}=\frac{5x}{-35}=\frac{10y}{30}=\frac{6z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{-35}=\frac{10y}{30}=\frac{6z}{6}=\frac{5x+10y+6z}{-35+30+6}=\frac{4}{1}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{5x}{-35}=4\rightarrow5x=-140\rightarrow x=-28\\\frac{10y}{30}=4\rightarrow10y=120\rightarrow y=12\\\frac{6z}{6}=4\rightarrow z=4\end{cases}}\)
Vậy x= -28; y=12; z=4
b) Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\rightarrow\frac{x}{6}=\frac{y}{15}\\\frac{y}{3}=\frac{z}{20}\rightarrow\frac{y}{15}=\frac{z}{100}\end{cases}}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{100}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{100}=k\)
\(\Rightarrow x=6k;y=15k;z=100k\)
\(y\cdot z=900\rightarrow15k\cdot100k=900\)
\(\rightarrow1500\cdot k^2=900\)
\(\rightarrow k^2=\frac{3}{5}\rightarrow k\varepsilon\varnothing\)
Vậy x;y;z ko có giá trị thỏa mãn
c) Ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{x^2}{4}=\frac{y}{25}^2\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{116}{29}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{4}=4\rightarrow x^2=16\rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\\\frac{y^2}{25}=4\rightarrow y^2=100\rightarrow\orbr{\begin{cases}y=10\\y=-10\end{cases}}\end{cases}}\)\(\Rightarrow\frac{x^2}{4}=4\rightarrow x^2=16\rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
\(\frac{y^2}{25}=4\rightarrow y^2=100\rightarrow\orbr{\begin{cases}y=10\\y=-10\end{cases}}\)
Vậy (x;y) = (4;10); (-4;-10)
1. 2x = 3y-2
2x+2x = 3y
4x = 3y
=> \(\frac{x}{3}=\frac{y}{y}\Rightarrow\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\frac{x}{3}=2\Rightarrow x=6\)
=> \(\frac{y}{4}=2\Rightarrow y=8\)
a) 3x = 7y ⇒ x/7 = y/3
⇒ x/7 = 2y/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2
x/7 = 2 ⇒ x = 2.7 = 14
y/3 = 2 ⇒ y = 2.3 = 6
Vậy x = 14; y = 6
b) x/2 = y/3 ⇒ x/6 = y/9 (1)
x/3 = z/4 ⇒ x/6 = z/8 (2)
Từ (1) và (2) ⇒ x/6 = y/9 = z/8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1
x/6 = 1 ⇒ x = 1.6 = 6
y/9 = 1 ⇒ y = 1.9 = 9
z/8 = 1 ⇒ z = 1.8 = 8
Vậy x = 6; y = 9; z = 8
c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)
y/5 = z/4 ⇒ y/15 = z/12 (4)
Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1
2x/20 = 1 ⇒ x = 1.20 : 2 = 10
y/15 = 1 ⇒ y = 1.15 = 15
z/12 = 1 ⇒ z = 1.12 = 12
Vậy x = 10; y = 15; z = 12
2. 3x = 7y và x + y = 20
Ta có: 3x = 7y
\(\Rightarrow\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x+y}{7+3}=\frac{20}{10}=2\)
Vậy \(\frac{x}{7}=2\Rightarrow x=2.7=14\)
\(\frac{y}{3}=2\Rightarrow y=2.3=6\)