Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(143=11.13=13.11=1.143=143.1\)
Từ đây ta có bảng :
x + 1 | 11 | 13 | 1 | 143 |
x | 10 | 12 | 0 | 142 |
2y – 5 | 13 | 11 | 143 | 1 |
y | 9 | 8 | 74 | 3 |
\(\hept{\begin{cases}x+y=3\\y+z=-1\\z+x=-2\end{cases}}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=0\)
\(\Rightarrow2\left(x+y+z\right)=0\)
\(\Rightarrow x+y+z=0\)
\(\hept{\begin{cases}z=0-\left(x+y\right)=-3\\x=0-\left(y+z\right)=1\\y=0-\left(z+x\right)=2\end{cases}}\)
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
Bài 1 :
Lý luận chung cho cả 2 câu a) và b) :
Vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0, mà tổng của chúng lại bằng 0
a) \(\Rightarrow\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
b) \(\Rightarrow\hept{\begin{cases}x-3=0\\x-2y-5=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
x,y nguyên à bạn hay x,y là số thực?
x,y là số nguyên ạ