Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ: \(B-\left(x^2+xy+y^2\right)=2x^2-xy+y^2\)
\(\Rightarrow B=\left(2x^2-xy+y^2\right)+\left(x^2+xy+y^2\right)\)
\(B=2x^2-xy+y^2+x^2+xy+y^2\)
\(B=\left(2x^2+x^2\right)+\left(y^2+y^2\right)+\left(xy-xy\right)\)
\(B=3x^2+2y^2\)
TA CÓ: \(\left(\frac{1}{2}.xy+x^2-\frac{1}{2}x^2y\right)-C=-xy+x^2y+1\)
\(\Rightarrow C=\left(\frac{1}{2}xy+x^2-\frac{1}{2}x^2y\right)-\left(-xy+x^2y+1\right)\)
\(C=\frac{1}{2}xy+x^2-\frac{1}{2}x^2y+xy-x^2y-1\)
\(C=\left(\frac{1}{2}xy+xy\right)+\left(\frac{-1}{2}x^2y-x^2y\right)+x^2-1\)
\(C=\frac{3}{2}xy+\frac{-3}{2}x^2y+x^2-1\)
mk nha
\(4x=3y=8z\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{2z}{3}\Rightarrow\frac{2x}{6}=\frac{2y}{8}=\frac{2z}{3}=\frac{2\left(x+y+z\right)}{6+8+3}=\frac{110}{17}\)
Từ đó suy ra x, y, z
1 , sai đề
2/ xy-x-y+1=0
x(y-1)-(y-1)=0
(y-1)(x-1)=0
->y-1=o hoặc x-1=0
y-1=0 y=1
x-1=0 x=1
vậy x=y=1
3,
a Ta có
xy -x-y=-1
=> x(y-1)-(y-1)=0
=> (y-1)(x-1)=0
=> + y-1 =0 và x-1 thỏa mãn với mọi số nguyên
+ x-1=0 và y-1 thỏa mãn với mọi số nguyên
Ta có : x + y + xy = 55
=>(x+xy)+y+1=55+1=56
=>x(y+1)+(y+1)=56
=>(x+1)(y+1)=56
=>(x+1);(y+1) thuộc tập hợp ước của 56 = (1;56;2;28;4;14;7;8)
=> Ta có bảng sau :
Vậy ta có các cặp số nguyên (x;y) thỏa mãn là :(0;55);(55;0);(1;27);(27;1);(3;13);(13;3);(6;7);(7;6)
bại này ban phải co thêm điều kiện x,y la so nguyen ( hoac so tu nhien )
Ta co
x+y+xy=55
=>x(y+1) + y+1=55+1
=>(y+1)(x+1)=56
Đến đây ke bang ra la xong