Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Đặt \(\frac{x+y}{7}=\frac{x-y}{3}=t\)
=> x + y = 7t (1)
=> x - y = 3t (2)
Từ (1) và (2) => x + y + x - y = 7t + 3t = 10t => 2x = 10t => x = 5t
x - y = 3t => y = x- 3t = 5t - 3t = 2t
Ta có : x.y = 250 => 5t.2t = 250 => \(10t^2=250\)
=> \(t^2=25=\left(5\right)^2=\left(-5\right)^2\)
=> t = 5 hoặc t = -5
(+) với t = 5 => x = 5.5 = 25
y = 5.2 = 10
(+) với t = -5 => x = -5.5 = -25
y = -5.2 = -10
\(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
\(\Rightarrow xy=12k^2=108\Rightarrow k=\pm3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm9\\y=\pm12\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=9\\y=12\end{matrix}\right.\\\left\{{}\begin{matrix}x=-9\\y=-12\end{matrix}\right.\end{matrix}\right.\)
Áp dụng t/c dãy ................. :
\(\frac{x}{3}=\frac{y}{5}=\frac{x.y}{3.5}=\frac{60}{15}=4\)
\(\Rightarrow\frac{x}{3}=4\Rightarrow x=12\)
\(\Rightarrow\frac{y}{5}=4\Rightarrow y=20\)
Coi x/3=y/5=k=>x=3k,y=5k
Ta có : x.y=3k.5k=15.k2=60=>k2=60:15=4=>k=2;(-2)
Với k=2 =>x=6;y=10
Với k=(-2)=> x=(-6);y=(-10)
x+y=3(x-y) <=> x+y=3x-3y <=> 2x=4y => x=2y
x+y=xy. Thay x=2y vào ta được: 2y+y=2y.y <=> 3y=2y2
<=> y(2y-3)=0 => \(\hept{\begin{cases}y=0\\y=\frac{3}{2}\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=2.\frac{3}{2}=3\end{cases}}\)
Các cặp x, y thỏa mãn là: (0; 0); (3; 3/2)