Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{7};x+y-7=60\)
\(\Rightarrow\frac{x}{5.8}=\frac{y}{6.8};\frac{y}{8.6}=\frac{z}{7.6};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48};\frac{y}{48}=\frac{z}{42};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42};x+y=67\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{40}=\frac{y}{48}=\frac{x+y}{40+48}=\frac{67}{88}\)
Tính nốt nha
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)
\(x=-3;y=6\)
b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
\(x=-52;y=-65\)
c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)
\(x=28;y=16\)
C1 dãy tỉ số bằng nhau
\(\frac{x}{y}=\frac{3}{1}\Rightarrow\frac{x}{3}=\frac{y}{1}=\frac{x+y}{3+1}=-\frac{6}{\frac{5}{4}}=-\frac{3}{10}\)
\(\frac{x}{3}=-\frac{3}{10}\Rightarrow x=-\frac{3}{10}.3=-\frac{9}{10}\)
\(\frac{y}{1}=-\frac{3}{10}\Rightarrow y=-\frac{3}{10}.1=-\frac{3}{10}\)
\(x=-\frac{9}{10}\) và \(y=-\frac{3}{10}\)
\(x-y=13\Leftrightarrow y=x-13\)
Do thế \(\frac{x}{y}=\frac{4}{5}\Leftrightarrow\frac{x}{x-13}=\frac{4}{5}\Leftrightarrow5x=4\left(x-13\right)\)
\(\Leftrightarrow5x=4x-52\Leftrightarrow x=-52\Leftrightarrow y=-52-13=-65\)
Ta có: x : y = 4 : 5 => x/4 = y/5
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
=> \(\hept{\begin{cases}\frac{x}{4}=-13\\\frac{y}{5}=-13\end{cases}}\) => \(\hept{\begin{cases}x=-13.4=-52\\y=-13.5=-65\end{cases}}\)
Vậy ...
x:y = 2: ( -3 )
\(\Rightarrow\frac{x}{2}=\frac{y}{-3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{-3}=\frac{x+y}{2+\left(-3\right)}=\frac{-2016}{-1}=2016\)
\(\Rightarrow x=2016.2=4032;y=2016.\left(-3\right)==6048\)
x : 2 = y : 5 hay \(\frac{x}{2}=\frac{y}{5}\)
Ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
\(\Rightarrow x=3.2=6\) và \(y=3.5=15\)
a) Ta có: \(\dfrac{x}{y}=\dfrac{20}{9}\Rightarrow\dfrac{x}{20}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{20}=\dfrac{y}{9}=\dfrac{x-y}{20-9}=\dfrac{-44}{11}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=20\cdot-4=-80\\y=-4\cdot9=-36\end{matrix}\right.\)
b) \(\dfrac{x}{y}=2\dfrac{1}{2}\Rightarrow\dfrac{x}{y}=\dfrac{5}{2}\Rightarrow\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}\Rightarrow\dfrac{x+y}{5+2}=\dfrac{40}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}\text{x}=\dfrac{40}{7}\cdot5=\dfrac{200}{7}\\y=\dfrac{40}{7}\cdot2=\dfrac{80}{7}\end{matrix}\right.\)
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
Tớ viết nhầm:
5.xy=3.yy(nhân cả 2 vế với y)
mà xy=60
=>5.60=3.y2
=>300=3.y2
=>y2=100=102=(-10)2
=>y=10,-10
=>x=60:10=6,x=60:(-10)=-6
Vậy x=6,y=10
x=-6,y=-10
Ta có: x:y = 3:5
=> x/3= y/5
Đặt x/3 = y/5 = k
=> x= 3k; y= 5k
Thay x= 3k; y= 5k vào x. y = 60 ta có:
3k . 5k= 60
=> k² . 15= 60
=> k= cộng trừ 4
Sau đó bạn thay k vào x là đk