
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Câu 3:
a: A(x)=x^3+3x^2-4x-12
B(x)=x^3-3x^2+4x+18
A(x)+B(x)
=x^3+3x^2-4x-12+x^3-3x^2+4x+18
=2x^3+6
A(x)-B(x)
=x^3+3x^2-4x-12-x^3+3x^2-4x-18
=6x^2-8x-30
b: A(-2)=(-8)+3*4-4*(-2)-12
=-20+3*4+4*2=0
=>x=-2 là nghiệm của A(x)
B(-2)=(-8)-3*(-2)^2+4*(-2)+18=-10
=>x=-2 ko là nghiệm của B(x)

a. đặt x/4=y/7=k => x=4k; y=7k
xy=112
=> 4k.7k=112
=> 28k2=112
=> k2=112:28
=> k2=4=22=(-2)2
=> k=2 hoặc k=-2
TH1: k=2
=> x=4k=4.2=8
=> y=7k=7.2=14
TH2: k=-2
=> x=4k=4.(-2)=-8
=> y=7k=7.(-2)=-14
b. x/y=2/5 => x/2=y/5=k => x=2k; y=5k
xy=40
=> 2k.5k=40
=> 10k2=40
=> k2=40:10
=> k2=4
=> k=2 hoặc k=-2
Th1: k=2
=> x=2k=2.2=4
=> y=5k=5.2=10
TH2: k=-2
=> x=2k=2.(-2)=-4
=> y=5k=5.(-2)=-10
a) Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)
Ta có xy = 112
\(\Rightarrow\) 4k.7k = 112
\(\Rightarrow\) 28k2 = 112
\(\Rightarrow\) k2 = 4
\(\Rightarrow\) k = + 2
\(\Rightarrow\) x = 4.(+ 2) = + 8; y = 7.(+ 2) = + 14
b) \(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Làm tương tự như câu a

1: xy+x+y+1=0
=>x(y+1)+(y+1)=0
=>(x+1)(y+1)=0
=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)
2: xy+x+6=0
=>x(y+1)=-6
=>(x;y+1)∈{(1;-6);(-6;1);(-1;6);(6;-1);(2;-3);(-3;2);(-2;3);(3;-2)}
=>(x;y)∈{(1;-7);(-6;0);(-1;5);(6;-2);(2;-4);(-3;1);(-2;2);(3;-3)}
3: -xy-x-y-1=0
=>xy+x+y+1=0
=>x(y+1)+(y+1)=0
=>(x+1)(y+1)=0
=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)
4: xy-x-y+1=0
=>x(y-1)-(y-1)=0
=>(x-1)(y-1)=0
=>\(\begin{cases}x-1=0\\ y-1=0\end{cases}\Rightarrow\begin{cases}x=1\\ y=1\end{cases}\)
5: xy+2x+y+11=0
=>x(y+2)+y+2+9=0
=>x(y+2)+(y+2)=-9
=>(x+1)(y+2)=-9
=>(x+1;y+2)∈{(1;-9);(-9;1);(-1;9);(9;-1);(3;-3);(-3;3)}
=>(x;y)∈{(0;-11);(-10;-1);(-2;7);(8;-3);(2;-5);(-4;1)}
6: ĐKXĐ: x<>0
\(\frac{5}{x}+\frac{y}{4}=\frac18\)
=>\(\frac{20+xy}{4x}=\frac18\)
=>\(\frac{40+2xy}{8x}=\frac{x}{8x}\)
=>40+2xy=x
=>x-2xy=40
=>x(1-2y)=40
=>x(2y-1)=-40
mà 2y-1 lẻ(do y nguyên)
nên (x;2y-1)∈{(-40;1);(40;-1);(8;-5);(-8;5)}
=>(x;2y)∈{(-40;2);(40;0);(8;-4);(-8;6)}
=>(x;y)∈{(-40;1);(40;0);(8;-2);(-8;3)}
8: (x+2)(y-3)=-3
=>(x+2;y-3)∈{(1;-3);(-3;1);(-1;3);(3;-1)}
=>(x;y)∈{(-1;0);(-5;4);(-3;6);(1;2)}

a) 25 - y2= 8.(x -2009)2
Do 8.(x-2009)2 không âm với mọi x nên 25 - y^2 không âm nên y^2 nhỏ hơn hoặc bằng 25
TH1: y = 0 thay vào phương trình thì x không thuộc Z (loại)
TH2: y = +-1 thay vào phương trình thì x không thuộc Z ( loại)
TH3: y = +-2 thay vào phương trình thì x không thuộc Z loại
chỉ thử đến y=+- 5 để thỏa mãn y2 nhỏ hơn hoặc bằng 25
Cuối cùng ta được y = +- 5 và x = 2009
b, x3.y=x.y3+1997x3.y=x.y3+1997
⇔x3.y−x.y3=1997⇔x3.y−x.y3=1997
Ta có: -1997 là số nguyên tố
-xy(x+y)(x-y) là hợp số
