Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)xy+3x-2y=11\)
\(\Leftrightarrow xy+3x-2y-6=5\)
\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)
\(b)2x^2-2xy+x-y=12\)
\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)
\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)
\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)
\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
Vì 2x+1 luôn lẻ
\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
xy-2+2y-x=13
=>xy+2y-x-2=13
=>y.(x+2)-(x+2)=13
=>(y-1).(x+2)=13
Ta thấy: 13=1.13=(-1).(-13)
Ta có bảng sau:
x+2 | 1 | 13 | -1 | -13 |
x | -1 | 9 | -3 | -15 |
y-1 | 13 | 1 | -13 | -1 |
y | 14 | 2 | -12 | 0 |
Vậy (x,y)=(-1,14),(9,2),(-3,-12),(-15,0)
Mình viết gọn thôi nhé , tại nhiều câu quá ^^
a/ \(\left(x+1\right)\left(1-y\right)=2\)
b/ \(\left(x+2\right)\left(y-1\right)=13\)
c/ \(\left(x-2\right)\left(y+3\right)=1\)
d/ \(\left(x-1\right)\left(y-1\right)=3\)
e/ \(\left(2x-y\right)\left(x+2y\right)=7\)
Về cách tìm nghiệm nguyên chắc bạn biết rồi nên mình không viết rõ ra nhé ^^
vết tn mk ko hiểu tại sao lại phân tích như vậy
còn cách tìm nghiệm thì mk pit
a/
$xy-2x+y=13$
$\Rightarrow x(y-2)+(y-2)=11$
$\Rightarrow (y-2)(x+1)=11$
Với $x,y$ là số nguyên thì $x+1, y-2$ cũng là số nguyên. Mà tích của chúng bằng $11$ nên ta xét các TH sau:
TH1: $x+1=1, y-2=11\Rightarrow x=0; y=13$
TH2: $x+1=-1, y-2=-11\Rightarrow x=-2; y=-9$
TH3: $x+1=11, y-2=1\Rightarrow x=10; y=3$
TH4: $x+1=-11, y-2=-1\Rightarrow x=-12; y=1$
Bài 13:
(12x-5)(4x-1)+(3x-7)(1-16x)=81
<=>48x2-12x-20x+5+3x-48x2-7+112x=81
<=>-32x+115x=81+2
<=>83x=83
<=>x=1
Bài 14:
Gọi 3 số chẵn đó lần lượt là: a;(a+2);(a+4)
Theo đề bài ra ta có:
(a+2)(a+4)=a(a+2)+192
=>a2+6a+8=a2+2a+192
=>4a=184
=>a=46
Suy ra 2 số còn lại là 46+2=48 và 46+4=50
Vậy 3 số chẵn liên tiếp thỏa mãn là 46;48;50
Bài 8:
b)(x2-xy+y2)(x+y)
=x3-x2y+xy2+y3-xy2+x2y
=x3+y3
Đây còn là 1 trong các HĐT đáng nhớ
b: =>(x+2)(y-1)=13
\(\Leftrightarrow\left(x+2;y-1\right)\in\left\{\left(1;13\right);\left(13;1\right);\left(-1;-13\right);\left(-13;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(-1;14\right);\left(11;2\right);\left(-3;-12\right);\left(-15;0\right)\right\}\)
\(P+R=-xy\cdot(x-y)\\\Leftrightarrow R=-xy(x-y)-P\\\Leftrightarrow R=-x^2y+xy^2-(5x^2y-2xy^2+xy-x+y-2)\\\Leftrightarrow R=-x^2y+xy^2-5x^2y+2xy^2-xy+x-y+2\\\Leftrightarrow R=(-x^2y-5x^2y)+(xy^2+2xy^2)-xy+x-y+2\\\Leftrightarrow R=-6x^2y+3xy^2-xy+x-y+2\)
Ta có:
\(P+R=-xy\cdot\left(x-y\right)\)
\(\Leftrightarrow\left(5x^2y-2xy^2+xy-x+y-2\right)+R=-x^2y+xy^2\)
\(\Leftrightarrow R=-x^2y+xy^2-5x^2y+2xy^2+xy+x-y+2\)
\(\Leftrightarrow R=\left(-x^2y-5x^2y\right)+\left(xy^2+2xy^2\right)+xy+x-y+2\)
\(\Leftrightarrow R=-6x^2y+3xy^2+xy+x-y+2\)