Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c của dãy tỉ số bằng nhau ta có : \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}\) mà x+y = 16 ⇒ \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{16}{8}=2\) ⇒ x = 3.2 = 6 và y = 5.2 = 10 Vậy x = 6 và y = 10
\(\dfrac{x}{3}=\dfrac{y}{5}và\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
* \(\dfrac{x}{3}=2=>x=3.2=6\)
*\(\dfrac{y}{3}=2=>y=5.2=10\)
Do \(7x=3y\)\(\Rightarrow\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\) ( do x - y = 16 )
Khi đó:
\(\frac{x}{3}=-4\)\(\Rightarrow x=\left(-4\right)\cdot3=-12\)
\(\frac{y}{7}=-4\)\(\Rightarrow y=\left(-4\right)\cdot7=-28\)
Vậy x = -12 ; y = -28
4x=3y
=>x/3=y/4
=>x2/9=y2/16=(x2+y2)/(9+16)=100/25=4 (dùng tính chất dãy tỉ số bằng nhau)
x2/9=4=>x2=36=>x=6 hoặc x=-6
y2/16=4=>y2=64=>y=8 hoặc y=-8
Ta có: \(\frac{x}{y}=\frac{3}{2}=>2x=3y\)
Lại có: 2x-y=-16
=> 3y-y=-16 <=> 2y=-16 => y=-16:2 => y=-8
=> 2x=3.(-8)=-24 => x=-24:2 => x=-12
Đáp số: x=-12, y=-8
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(x^2=4.9=36\)
=> x = 6 hoặc x = -6
=> \(y^2=4.16=64\)
=> y = 8 hoặc y = -8
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow x^2=36\Rightarrow x=\pm6\)
\(\Rightarrow x^2=64\Rightarrow x=\pm8\)
Vậy .....