\(^2\)+2y\(^2\)+2xy-2y+1=0
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

\(x^2+2y^2+2xy-2y+1=0\)

=> \(x^2+y^2+y^2+2xy-2y+1=0\)

=> \((x^2+2xy+y^2)+(y^2-2y+1)=0\)

=> \(\left(x+y\right)^2+\left(y-1\right)^2=0\)

Ta thấy:

\(\left(x+y\right)^2\ge0\)

\(\left(y-1\right)^2\ge0\)

=> \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\)

\(\left(x+y\right)^2+\left(y-1\right)^2=0\)

=> \(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy x = -1; y =1

27 tháng 6 2017

\(x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

Dễ thấy: \(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2\ge0\)

Xảy ra khi \(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

27 tháng 6 2017

\(x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\left\{{}\begin{matrix}\left(x+y\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2\ge0\)

\(\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy x = -1, y = 1

22 tháng 6 2018

bài 4: Ta có \(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)

\(x-y=y\Rightarrow x=2y\)

thay x=2y vào A ta đc :

A = \(\dfrac{x-y}{x+y}=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2018

Bài 1:

Ta có: \(x+y+z=0\Rightarrow z=-x-y\Rightarrow z^2=(-x-y)^2\)

\(\Rightarrow x^2+y^2-z^2=x^2+y^2=x^2+y^2-(-x-y)^2=-2xy\)

Hoàn toàn tương tự:

\(y^2+z^2-x^2=-2yz; z^2+x^2-y^2=-2xz\)

Do đó:

\(P=\frac{(x^2+y^2-z^2)(y^2+z^2-x^2)(z^2+x^2-y^2)}{16xyz}=\frac{(-2xy)(-2yz)(-2xz)}{16xyz}=\frac{-xyz}{2}\)

9 tháng 7 2018

Bài 1 :

\(e,x^2+2xy+y^2-2x-2y+1\)

\(=\left(x+y-1\right)^2\)

Bài 2:

\(b,2x^3+3x^2+2x+3=0\)

\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)

\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)

27 tháng 6 2017

\(x^2+2y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+y^2+2xy-2y+1=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

vì \(\left(x+y\right)^2\ge0;\left(y-1\right)^2\ge0\)nên

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

19 tháng 8 2020

a) \(x^2+10x+26+y^2+2y\)

\(=x^2+2.5x+25+1+y^2+2y\)

\(=\left(x^2+2.5x+25\right)+\left(1+2y+y^2\right)\)

\(=\left(x+5\right)^2+\left(1+y\right)^2\)

b) \(x^2-2xy+2y^2+2y+1\)

\(=x^2-2xy+y^2+y^2+2y+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

c) \(z^2-6z+13+t^2+4t\)

\(=z^2-2.3z+9+4+t^2+4t\)

\(=\left(z^2-2.3x+9\right)+\left(4+4t+t^2\right)\)

\(=\left(z-3\right)^2+\left(2+t\right)^2\)

d) \(4x^2+2z^2-4xz-2z+1\)

\(=4x^2+z^2+z^2-4xz-2z+1\)

\(=\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)\)

\(=\left(2x-z\right)^2+\left(z-1\right)^2\)

24 tháng 9 2017

Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@

B1: Phân tích thành nhân tử:

a) \(6x^2+9x=3x\left(2x+3\right)\)

b) \(4x^2+8x=4x\left(x+2\right)\)

c) \(5x^2+10x=5x\left(x+2\right)\)

d) \(2x^2-8x=2x\left(x-4\right)\)

e) \(5x-15y=5\left(x-3y\right)\)

f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)

g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)

\(=\left(x-1-2y\right)\left(x-1+2y\right)\)

h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)

i) \(9x^2-18x+9=\left(3x-3\right)^2\)

k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)

m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)

\(=-\left(2x-y\right)^2\)

n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)

\(=\left(x-31\right)\left(x+1\right)\)

o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)

\(=\left(2+x\right)\left(8+x\right)\)

p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)

\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)

\(=\left(5x-5\right)\left(9x-3\right)\)

24 tháng 9 2017

Bài 1 :

a ) \(6x^2+9x=3x\left(x+3\right)\)

b ) \(4x^2+8x=4x\left(x+2\right)\)

c ) \(5x^2+10x=5x\left(x+2\right)\)

d ) \(2x^2-8x=2x\left(x-4\right)\)

e ) \(5x-15y=5\left(x-3y\right)\)

f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)

h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)

i ) \(9x^2-18x+9=\left(3x-3\right)^2\)

k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)

l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)

m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)

n ) \(\left(x-15\right)^2=x^2-30x+15^2\)

o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)

p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)

Bài 2 :

a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)

b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)

c ) \(2x+x^2-2y-2xy=......................\)

d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)

e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)

f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)

17 tháng 9 2017

ns thật vs c tôi ms đọc đề bài thôi đã ko hiểu j rồi ns chi đến lm giúp c. Sr nhé

17 tháng 9 2017

hihi, toán NC mà ms lên đây hỏi

20 tháng 6 2017

\(x^2+2y^2+2xy-2y+1=0\)

\(\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

\(\left(x+y\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

20 tháng 6 2017

\(x^2+2y^2+2xy-2y+1=0\)

\(\Rightarrow x^2+2xy+y^2+y^2-2y+1=0\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)

       \(\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-y\left(1\right)\\y=1\end{cases}}\)

              Từ (1) ta được x=-1;y=1

6 tháng 3 2017

mơn bn nhìu na!!!

6 tháng 3 2017

uk, ko có chi. mà để cho mn tham khảo lun