Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,Ta có
3x+7y=24
<=>3x=24-7y
Vì x là số tự nhiên
=>\(24-7y\ge0\)
<=>\(7y\le24\)
<=>\(y<4\) mà y là số tự nhiên
=>\(y=\left\{0;1;2;3\right\}\)
=>\(x=\left\{....\right\}\)
b,\(x^2-4x+2y-xy+9=0\)
<=>\(\left(x^2-4x+4\right)-y\left(x-2\right)+5=0\)
<=>\(\left(x-2\right)^2-y\left(x-2\right)=-5\)
<=>\(\left(x-2\right)\left(x-2-y\right)=5\)
Đến đây giải theo pp pt nghiệm nguyên.
Nếu mình làm đúng thì tick nha bạn,cảm ơn.
tick tui làm tiếp cho nha.
1. Ta có:
\(x^3-9x^2+27x-26=x^3-2x^2-7x^2+14x+13x-26\)
\(=x^2\left(x-2\right)-7x\left(x-2\right)+13\left(x-2\right)=\left(x-2\right)\left(x^2-7x+13\right)\)
Thay x = 23, ta có: \(C=\left(23-2\right)\left(23^2-7.23+13\right)=8001\)
2.
a) \(x^2+4y^2+6x-12y+18=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-12y+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-3\right)^2=0\)
Mà \(\left(x-3\right)^2\ge0\) với mọi x, \(\left(2y-3\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)và \(\left(2y-3\right)^2=0\Leftrightarrow2y-3=0\Leftrightarrow y=\frac{3}{2}\)
Vậy \(\left(x,y\right)=\left(3;\frac{3}{2}\right)\)
b) \(2x^2+2y^2+2xy-10x-8y+41=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)+\left(y^2-8y+16\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2=0\)
.....................................
Rồi giải tương tự như trên
\(x^2-y^2+2x-4y-10=0\)\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)\(\Leftrightarrow\left[\left(x+1\right)-\left(y+2\right)\right]\left[\left(x+1\right)+\left(y+2\right)\right]=7\)\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7.\)
Mà x, y nguyên dương nên x - y - 1 và x + y + 3 nguyên => x - y - 1 và x + y + 3 là ước nguyên của 7. Do đó ta có bảng sau:
x - y - 1 | 1 | -1 | 7 | -7 |
x + y + 3 | 7 | -7 | 1 | -1 |
x - y | 2 | 0 | 8 | -6 |
x + y | 4 | -10 | -2 | -4 |
x | 3 | -5 | 3 | -5 |
y | 1 | -5 | -5 | 1 |
Kết luận | thoả mãn | x, y < 0 (loại) | y < 0 (loại) | x < 0 (loại) |
Vậy với x = 3, y = 1 thì thoả mãn \(x^2-y^2+2x-4y-10=0.\)
\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=13\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=13\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=13\)
Tới đây thì đơn giản rồi nhé
pt <=> \(\left(x^2+2x+1\right)-\left(y^2+4y+4\right)=7\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=7\)
Mặt khác x,y>0 => x+y+3>x-y-1 và x+y+3>0
Nên ta có cặp nghiệm duy nhất sau: \(\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x+y=4\\x-y=2\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x=3\\y=1\end{cases}}\)
b, x2 +y2+z2 +2x-4y-6z+14=0
<=> (x2+2x+1)+(y2-4y+4)+(z2-6z+9)=0
<=> (x+1)2+(y-2)2+(z-3)2=0
=>(x+1)2=(y-2)2=(z-3)2=0
=>x+1=y-2=z-3=0
=> x=-1; y=2; z=3
c, 2x2+y2-6x-4y+2xy+5=0
<=> (x2+y2+4+2xy-4x-4y)+(x2-2x+1)=0
<=> (x+y-2)2+(x-1)2=0
=> (x+y-2)2=(x-1)2=0
=>x+y-2=x-1=0
=>x=1; y=1
Ta có:
\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Vì \(x,y\) nguyên dương
Nên \(x+y+3>x-y-1>0\)
\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)
Vậy phương trình có nghiệm nguyên dương duy nhất \(\left(x,y\right)=\left(3;1\right)\)
Bài 1 :
Câu a : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)
Câu b : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy \(GTNN\) của \(A\) là \(\dfrac{11}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)
Bài 2 :
Câu a : \(x^2-6x+y^2-4y+13=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)
Do : \(\left(x-3\right)^2\ge0\) and \(\left(y-2\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy \(x=3\) and \(y=2\)
Câu b : \(4x^2-4x+y^2+6y+10=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2+\left(y+3\right)^2=0\)
Because the : \(\left(2x-1\right)^2\ge0\) and \(\left(y+3\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{2}\) và \(y=-3\)
\(x^2-y^2+2x-4y-10=0\\ \Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\\ \Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
Đề có sao k
=0 chứ